A SEARCHER VERSUS HIDER GAME WITH INCOMPLETE INFORMATION ABOUT SEARCH RESOURCES

2013 ◽  
Vol 30 (02) ◽  
pp. 1250052 ◽  
Author(s):  
ANDREY GARNAEV ◽  
ROBBERT FOKKINK

We introduce a search game in which a hider has partial information about a searcher's resource. The hider can be a terrorist trying to hide and the searcher can be special forces trying to catch him. The terrorist does not know the number of forces involved in the search but just its distribution. We model this situation by a noncooperative game. In a related setup, which is motivated by wireless networks applications, the terrorist inserts a malicious node in a network, reducing network connectivity and thereby undermining its security. Meanwhile, the network operator applies appropriate measures to detect malicious nodes and maintain network performance. We investigate how the information about the total search resources that are available to the hider can influence the behavior of both players. For the case, where the distribution has two mass points, we prove that the game has a unique equilibrium and moreover, we describe explicitly this equilibrium, its structure and some other properties.

Nodes are important aspect of Mobile network. Mobile ad-hoc network means any network that is made at the time of need. Ad-hoc network has its own place in networking. Mobility in network makes it more demandable. Nodes are the device that takes part in network or makes network. Nodes behavior describes network configuration. Genuine node insures you proper working of network with best results as throughput or packet ratio. Presence of malicious nodes differs in comparison to genuine node. Malicious node degrades output of network. Performance metrics noted degradation in their quality when malicious node encounters in network. Malicious nodes in different sets of node density affect the network in different way


2019 ◽  
Vol 8 (3) ◽  
pp. 6116-6120

A Mobile Adhoc Network (MANET) is a self-organized system comprised of multiple mobile wireless nodes. They do not require the existing network infrastructure. Autonomous telescopes can change freely and inadvertently in a network that can establish a dynamic network temporarily, and these networks can often change their appearance. Due to the openness in network topology and the absence of centralized administration in management, MANET is vulnerable to attacks from malicious nodes. Therefore, security is a major issue in MANET, which drastically reduces network performance. Several trust parameters such as packet delivery ratio, packet dropping ratio, etc are used for detecting the malicious node attack in MANET. Among these, this paper uses the energy as the trust parameter for detecting the malicious node. The energy reduction ratio differs from the normal node and attacker node in MANET. Hence, the main aim of this paper is to find the Normal Energy Reduction Ratio (NERR) and Attacker Energy Reduction Ratio (AERR). These two values are used for differentiating the normal node and attacker node in MANET. For routing, this paper uses the Dynamic Source Routing (DSR) Protocol.


Author(s):  
Er. Ashu Garg ◽  
Sourav

Delay tolerant networks (DTNs), such as sensor networks with scheduled intermittent connectivity, vehicular DTNs that disseminate location-dependent information, and pocket-switched networks that allow humans to communicate without network infrastructure, are highly partitioned networks that may suffer from frequent disconnectivity. In DTNs, the in-transit messages, also named bundles, can be sent over an existing link and buffered at the next hop until the next link in the path appears. This message propagation process is usually referred to as the “store-carry-and-forward” strategy, and the routing is decided in an “opportunistic” fashion. We aim to evaluate the added effect of the presence of malicious nodes on ad hoc network performance, and determine appropriate measures to detect malicious nodes. A malicious node advertising itself as having a valid route to the destination. With this intension the attacker consumes or intercepts the packet without any forwarding. An attacker can completely modify the packet and generate fake information, this cause the network traffic diverted or dropped. Let H be a malicious node. When H receives a Route Request, it sends back a Route Reply immediately, which constructs the data and can be transmitted by itself with the shortest path. So S receives Route Reply and it is replaced by H->S. then H receives all the data from S. In this research we propose a new assesment based scheme for detection of Malicious Nodes in DTN. And examine different strategies for prevention to malicious nodes as well as Compare out come proposed scheme with the earliest established schemes.


2019 ◽  
Vol 17 (9) ◽  
pp. 696-700
Author(s):  
D. Muruganandam ◽  
J. Martin Leo Manickam

A MANET is an infrastructure-less type network, which consists of number of mobile nodes connected through wireless network interfaces. The Communication among nodes is made successfully when the nodes dynamically set up route among one another. The open nature and infrastructureless type of such networks causes the attacker's interest to penetrate through the network and decrease the network performance. Thus Security becomes a major concern for protected communication between mobile nodes. Packet misrouting stops the packet from reaching the destination by a malicious intermediate node. But the malicious node makes the intuition to its neighbors that it has done the genuine packet forwarding action. Moreover the malicious node makes the neighbours to suspect the normal node as malicious one. The proposed work ensures the detection of malicious nodes and avoids suspecting the trustworthy.


2015 ◽  
Vol 14 (6) ◽  
pp. 5809-5813
Author(s):  
Abhishek Prabhakar ◽  
Amod Tiwari ◽  
Vinay Kumar Pathak

Wireless security is the prevention of unauthorized access to computers using wireless networks .The trends in wireless networks over the last few years is same as growth of internet. Wireless networks have reduced the human intervention for accessing data at various sites .It is achieved by replacing wired infrastructure with wireless infrastructure. Some of the key challenges in wireless networks are Signal weakening, movement, increase data rate, minimizing size and cost, security of user and QoS (Quality of service) parameters... The goal of this paper is to minimize challenges that are in way of our understanding of wireless network and wireless network performance.


2016 ◽  
Vol 6 (2) ◽  
pp. 1-10
Author(s):  
Chaima Bensaid ◽  
Sofiane Boukli Hacene ◽  
Kamel Mohamed Faraoun

Vehicular networks or VANET announce as the communication networks of the future, where the mobility is the main idea. These networks should be able to interconnect vehicles. The optimal goal is that these networks will contribute to safer roads and more effective in the future by providing timely information to drivers and concerned authorities. They are therefore vulnerable to many types of attacks among them the black hole attack. In this attack, a malicious node disseminates spurious replies for any route discovery in order to monopolize all data communication and deteriorate network performance. Many studies have focused on detecting and isolating malicious nodes in VANET. In this paper, the authors present two mechanisms to detect this attack. The main goal is detecting as well as bypass cooperative black hole attack. The authors' approaches have been evaluated by the detailed simulation study with NS2 and the simulation results shows an improvement of protocol performance.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Junwei Zhao ◽  
Xi Chen

Individuals with different levels of education have substantial differences in their willingness to communicate with malicious nodes in a group; thus, the results of evolution of opinions tend to differ significantly. In this study, malicious nodes, driven by the benefits of a game, were added to groups of individuals with different levels of education, and a theoretical model of the game theory of group opinions that introduces malicious nodes was established. The influence of the proportion of malicious node spreading messages, the extent of tampering when malicious nodes spread messages, and the distribution of education levels in the group on the evolution of group opinions were considered. It was found that the rate of evolution of group opinions declined in groups with higher average education levels. The results of this study can be used to explain the phenomenon of fewer knowledge exchange behaviors in communities with high education levels, as is found in actual sociology. The reason is that highly educated individuals are more affected by distorted news when communicating. Therefore, the loss of communication with malicious nodes is greater, resulting in lower vigilance and willingness to communicate.


2020 ◽  
Vol 21 (3) ◽  
pp. 451-462
Author(s):  
Indu Bhardwaj ◽  
Sibaram Khara ◽  
Priestly Shan

Trust plays essential role in any securing communications between Vehicles in IOV. This motivated us to design a trust model for IoV communication. In this paper, we initially review literature on IoV and Trust and present a hybrid trust model that separates the malicious and trusted nodes to secure the interaction of vehicle in IOV. Node segregation is done using value of statistics (St). If St of each node lies in the range of mean (m) plus/minus 2 standard deviation (SD) of PDR then nodes behaviour is considered as normal otherwise malicious. The simulation is conducted for different threshold values. Result depicts that PDR of trusted node is 0.63 that is much higher than the PDR of malicious node that is 0.15. Similarly, the average no. of hops and trust dynamics of trusted nodes are higher than that of malicious node. So, on the basis of values of PDR, number of available hops and trust dynamics, the malicious nodes can be clearly identified and discarded.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhiming Zhang ◽  
Yu Yang ◽  
Wei Yang ◽  
Fuying Wu ◽  
Ping Li ◽  
...  

The current detection schemes of malicious nodes mainly focus on how to detect and locate malicious nodes in a single path; however, for the reliability of data transmission, many sensor data are transmitted by multipath in wireless sensor networks. In order to detect and locate malicious nodes in multiple paths, in this paper, we present a homomorphic fingerprinting-based detection and location of malicious nodes (HFDLMN) scheme in wireless sensor networks. In the HFDLMN scheme, using homomorphic fingerprint and coding technology, the original data is divided into n packets and sent to the base station along n paths, respectively; the base station determines whether there are malicious nodes in each path by verifying the validity of the packets; if there are malicious nodes in one or more paths, the location algorithm of the malicious node is implemented to locate the specific malicious nodes in the path; if all the packets are valid, the original data is recovered. The HFDLMN scheme does not need any complex evaluation model to evaluate and calculate the trust value of the node, nor any monitoring nodes. Theoretical analysis results show that the HFDLMN scheme is secure and effective. The simulation results demonstrate promising outcomes with respect to key parameters such as the detection probability of the malicious path and the locating probability of the malicious node.


Author(s):  
Harsha Vasudev ◽  
Debasis Das

More study is needed to make VANETs more relevant. Opportunistic routing (OR) is a new model that has been proposed for wireless networks. OR has emerged from the research communities because of its ability to increase the performance of wireless networks. It benefits from the broadcast characteristic of wireless mediums to improve network performance. The basic function of OR is its ability to overhear the transmitted packet and to coordinate among relaying nodes. In this chapter, an exhaustive survey of existing OR protocols is done by considering various factors. More precisely, existing secure OR protocols are deliberated. Future directions of research are also included, which provide a superior way to overcome some of the limitations of these existing protocols. Through this detailed survey, an outline and in-depth knowledge of existing OR protocols can be acquired.


Sign in / Sign up

Export Citation Format

Share Document