scholarly journals Barboza–Alcaniz equation of state parametrization: Constraining the parameters in different gravity theories

2019 ◽  
Vol 34 (21) ◽  
pp. 1950163 ◽  
Author(s):  
Promila Biswas ◽  
Ritabrata Biswas

To justify the 20-year old distant Ia Supernova observations which revealed to us that our universe is experiencing a late-time cosmic acceleration, propositions of existence of exotic fluids inside our universe are made. These fluids are assumed to occupy homogeneously the whole space of the universe and to exert negative pressure from inside such that the late-time accelerated expansion is caused. Among the different suggested models of such exotic matters/energy popularly coined as dark matter/dark energy (DE), a well-known and popular process is “introduction of redshift parametrization” of the equation of state (EoS) parameter of these fluids. We, very particularly, take the parametrization proposed by Barboza and Alcaniz (BA) along with the cosmological constant. We use 39 data points for Hubble’s parameter calculated for different redshifts and try to constrain the DE EoS parameters for BA modeling. We then constrain the DE parametrization parameters in the background of Einstein’s general relativity, loop quantum gravity and Horava–Lifshitz gravity one after another. We find the [Formula: see text], [Formula: see text] and [Formula: see text] confidence contours for all these cases and compare them with each other. We try to speculate which gravity is constraining the parameters most and which one is letting the parameters to stay within a larger domain. We tally our results of 557 points Union2 Sample and again compare them for different gravity theories.

2021 ◽  
pp. 2150052
Author(s):  
Qihong Huang ◽  
Ruanjing Zhang ◽  
Jun Chen ◽  
He Huang ◽  
Feiquan Tu

In this paper, we analyze the universe evolution and phase space behavior of the Umami Chaplygin model, where the Umami Chaplygin fluid replaces both a dark energy and a dark and baryonic matter. We find the Umami Chaplygin model can be stable against perturbations under some conditions and can be used to explain the late-time cosmic acceleration. The results of phase space analysis show that there exists a late-time accelerated expansion attractor with [Formula: see text], which indicates the Umami Chaplygin fluid can behave as a cosmological constant. Moreover, the Umami Chaplygin model can describe the expansion history of the universe. The evolutionary trajectories of the statefinder diagnostic pairs and the finite time future singularities are also discussed.


2014 ◽  
Vol 92 (9) ◽  
Author(s):  
P.K. SAHOO ◽  
B. Mishra

A five dimensional Kaluza-Klein space time is considered with wet dark fluid (WDF) source in the framework of f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor proposed by Harko et al. (Phys. Rev. D \textbf{84}, 024020, (2011)). A new equation of state in the form of WDF has been used for dark energy (DE) component of the universe. It is modeled on the equation of state p=\omega(\rho-\rho^*) which can be describing a liquid, for example water. The exact solutions to the corresponding field equations are obtained for power law and exponential law of the volumetric expansion. The geometrical and physical parameters for both the models are studied. The model obtained here may represent the inflationary era in the early universe and the very late time of the universe. This model obtained here shows that even in the presence of wet dark fluid, the universe indicates accelerated expansion of the universe.


2014 ◽  
Vol 92 (9) ◽  
pp. 1062-1067 ◽  
Author(s):  
P. K. Sahoo ◽  
B. Mishra

In this paper, we have investigated the five-dimensional Kaluza–Klein space time with wet dark fluid (WDF), which is a candidate for dark energy (DE), in the framework of f(R, T) gravity. R and T denote the Ricci scalar and the trace of the energy–momentum tensor, respectively (Harko et al. Phys. Rev. D, 84, 024020 (2011)). We have used equation of state in the form of WDF for the DE component of the universe. It is modeled on the equation of state p = ω(ρ – ρ*). With the help of the power law and exponential law of volumetric expansion, we have derived the exact solutions of the corresponding field equations. The geometrical and physical parameters for both the models are studied. The model obtained here may represent the inflationary era in the early universe and very late time of the universe. It is concluded that the model obtained here shows that even in the presence of WDF, the universe indicates accelerated expansion of the universe.


2007 ◽  
Vol 16 (08) ◽  
pp. 1341-1348 ◽  
Author(s):  
JIE REN ◽  
XIN-HE MENG

We generalize the ΛCDM model by introducing a unified EOS to describe the Universe contents modeled as dark viscous fluid, motivated by the fact that a single constant equation of state (EOS) p = -p0 (p0 > 0) reproduces the ΛCDM model exactly. This EOS describes the perfect fluid term, the dissipative effect, and the cosmological constant in a unique framework and the Friedmann equations can be analytically solved. Especially, we find a relation between the EOS parameter and the renormalizable condition of a scalar field. We develop a completely numerical method to perform a χ2 minimization to constrain the parameters in a cosmological model directly from the Friedmann equations, and employ the SNe data with the parameter [Formula: see text] measured from the SDSS data to constrain our model. The result indicates that the dissipative effect is rather small in the late-time Universe.


2019 ◽  
Vol 16 (10) ◽  
pp. 1950150
Author(s):  
I. Brevik ◽  
A. N. Makarenko ◽  
A. V. Timoshkin

We describe the accelerated expansion of the late-time universe using a generalized equation of state (EoS) when account is taken of bulk viscosity. We assume a homogeneous and isotropic Friedmann–Robertson–Walker spacetime. Solutions of the gravitational equations for dark energy are obtained in implicit form. Characteristic properties of the universe evolution in the presence of the viscosity effects are discussed. Finally, the dynamics of the accelerated expansion of the viscous universe are discussed on the basis of a modified logarithmic-corrected EoS.


2019 ◽  
Vol 34 (37) ◽  
pp. 1950310 ◽  
Author(s):  
Murat Korunur

In this paper, we study one of the new dark energy models named Tsallis holographic dark energy (THDE) model considering the Bianchi type-III spacetime model. Considering deceleration parameter, transition from deceleration to acceleration phase happens at [Formula: see text]. The equation of state (EoS) parameter has been found using the Granda–Oliveros (GO) scale. It is found that for [Formula: see text] values, EoS parameter behaves like the quintessence era; for [Formula: see text], EoS parameter behaves like the phantom dark energy and approaches [Formula: see text]CDM model at late-time cosmic acceleration phase. Also, we reconstructed a correspondence between THDE model and some well-known scalar fields, such as tachyon, quintessence and [Formula: see text]-essence. In addition, we evaluated equation of state parameter, kinetic energy and scalar potential versus time.


Author(s):  
Archana Dixit ◽  
Anirudh Pradhan ◽  
Raghavendra Chaubey

In this paper, we investigate the cosmic acceleration and the behavior of dark energy (DE) in the structure of the recently proposed [Formula: see text] gravity theory [G. R. P. Teruel, [Formula: see text] gravity, Eur. Phys. J. C 78 (2018) 660]. In this study, we obtained some fascinating cosmological features that are coherent with observational evidences and the touchstone [Formula: see text]CDM model. To find the deterministic solution, we consider a periodic deceleration parameter [Formula: see text], where [Formula: see text] [M. Shen and L. Zhao, Oscillating quintom model with time periodic varying deceleration parameter, Chin. Phys. Lett. 31 (2014) 010401], which predicts the decelerating and accelerating phases of the universe. The Equation of State (EoS) parameter also supports the idea of DE, which is the dominant component and it is responsible for the universe’s accelerated expansion. Here, we also construct cosmographic parameters, like, [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and studied their evolution in spatially flat [Formula: see text] gravity. We find that these observations are sufficient in comparison with the universe’s physical and kinematic properties and also consistent with ongoing (OHD[Formula: see text][Formula: see text][Formula: see text]JLA) observation. Next, we apply the geometric diagnostics, the state-finder ([Formula: see text]) in [Formula: see text] gravity to discriminate from the [Formula: see text]CDM model. We found that our model lies in quintessence and the Chaplygin Gas region. Finally, the model approaches [Formula: see text]CDM at the present epoch of the universe.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 205
Author(s):  
Sanjay Mandal ◽  
Avik De ◽  
Tee-How Loo ◽  
Pradyumn Kumar Sahoo

The objective of the present paper is to investigate an almost-pseudo-Ricci symmetric FRW spacetime with a constant Ricci scalar in a dynamic cosmological term Λ(t) and equation of state (EoS) ω(t) scenario. Several cosmological parameters are calculated in this setting and thoroughly studied, which shows that the model satisfies the late-time accelerating expansion of the universe. We also examine all of the energy conditions to check our model’s self-stability.


2021 ◽  
Vol 36 (08) ◽  
pp. 2150049
Author(s):  
Abdulla Al Mamon

In this paper, we reconstruct the late-time cosmological dynamics using a purely kinematic approach. In particular, considering a divergence-free parametrization for deceleration parameter [Formula: see text], we first derive the jerk parameter [Formula: see text] and then confront it with combination of various cosmological datasets. We use the most recent observational datasets consisting of the 1048 Pantheon Supernovae Ia data points in the redshift range [Formula: see text], the 51 data points of observational Hubble parameter (OHD) measurements in the redshift range [Formula: see text], the Hubble constant [Formula: see text] (R19) and the CMB shift parameter measurements. We study the evolution of different cosmological quantities for the present model and compare it with the concordance [Formula: see text]CDM model. We find that only the combined Pantheon+OHD+R19 data shows good agreement with the [Formula: see text]CDM [Formula: see text] model within [Formula: see text] confidence region. We also find that our model successfully generates late time cosmic acceleration along with a decelerated expansion in the past.


2011 ◽  
Vol 21 (3) ◽  
pp. 253 ◽  
Author(s):  
Vo Quoc Phong

According to experimental data of SNe Ia (Supernovae type Ia), we will discuss in detial dynamics of the DGP model and introduce a simple parametrization of matter $\omega$, in order to analyze scenarios of the expanding universe and the evolution of the scale factor. We find that the dimensionless matter density parameter at the present epoch $\Omega^0_m=0.3$, the age of the universe $t_0= 12.48$ Gyr, $\frac{a}{a_0}=-2.4e^{\frac{-t}{25.56}}+2.45$. The next we study the linear growth of matter perturbations, and we assume a definition of the growth rate, $f \equiv \frac{dln\delta}{dlna}$. As many authors for many years, we have been using a good approximation to the growth rate $f \approx \Omega^{\gamma(z)}_m$, we also find that the best fit of the growth index, $\gamma(z)\approx 0.687 - \frac{40.67}{1 + e^{1.7. (4.48 + z)}}$, or $\gamma(z)= 0.667 + 0.033z$ when $z\ll1$. We also compare the age of the universe and the growth index with other models and experimental data. We can see that the DGP model describes the cosmic acceleration as well as other models that usually refers to dark energy and Cold Dark Matter (CDM).


Sign in / Sign up

Export Citation Format

Share Document