ENERGY-DEPENDENT METRIC FOR GRAVITATION FROM CLOCK-RATE EXPERIMENTS

1999 ◽  
Vol 14 (24) ◽  
pp. 3799-3811 ◽  
Author(s):  
FABIO CARDONE ◽  
ROBERTO MIGNANI

We carry out a detailed analysis of the data on the comparison of clock rates between a flying clock and a clock at ground, performed by Alley and co-workers at the end of 1970's. The fit to such data is in favor of an energy-dependent metric for gravitation, whose time coefficient is at variance with the standard Einsteinian one in the weak-field approximation. By exploiting the formalism of a deformed Minkowski space–time, with metric coefficients dependent on the energy, we show that a possible lower limit on the propagation speed of gravitational effects is about 1010c, in agreement with a recent analysis by Van Flandern based on the acceleration of binary systems.

2012 ◽  
Vol 90 (11) ◽  
pp. 1077-1130 ◽  
Author(s):  
David Alba ◽  
Luca Lusanna

In this second paper we define a post-minkowskian (PM) weak field approximation leading to a linearization of the Hamilton equations of Arnowitt–Deser–Misner (ADM) tetrad gravity in the York canonical basis in a family of nonharmonic 3-orthogonal Schwinger time gauges. The York time 3K (the relativistic inertial gauge variable, not existing in newtonian gravity, parametrizing the family, and connected to the freedom in clock synchronization, i.e., to the definition of the the shape of the instantaneous 3-spaces) is set equal to an arbitrary numerical function. The matter are considered point particles, with a Grassmann regularization of self-energies, and the electromagnetic field in the radiation gauge: an ultraviolet cutoff allows a consistent linearization, which is shown to be the lowest order of a hamiltonian PM expansion. We solve the constraints and the Hamilton equations for the tidal variables and we find PM gravitational waves with asymptotic background (and the correct quadrupole emission formula) propagating on dynamically determined non-euclidean 3-spaces. The conserved ADM energy and the Grassmann regularization of self-energies imply the correct energy balance. A generalized transverse–traceless gauge can be identified and the main tools for the detection of gravitational waves are reproduced in these nonharmonic gauges. In conclusion, we get a PM solution for the gravitational field and we identify a class of PM Einstein space–times, which will be studied in more detail in a third paper together with the PM equations of motion for the particles and their post-newtonian expansion (but in the absence of the electromagnetic field). Finally we make a discussion on the gauge problem in general relativity to understand which type of experimental observations may lead to a preferred choice for the inertial gauge variable 3K in PM space–times. In the third paper we will show that this choice is connected with the problem of dark matter.


2011 ◽  
Vol 20 (05) ◽  
pp. 745-756 ◽  
Author(s):  
FRANCISCO DIEGO MAZZITELLI

We discuss the renormalization procedure for quantum scalar fields with modified dispersion relations in curved spacetimes. We consider two different ways of introducing modified dispersion relations: through the interaction with a dynamical temporal vector field, as in the context of the Einstein–Aether theory, and breaking explicitly the covariance of the theory, as in Hǒrava–Lifshitz gravity. Working in the weak field approximation, we show that the general structure of the counterterms depends on the UV behavior of the dispersion relations and on the mechanism chosen to introduce them.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Muhammad Sarfraz ◽  
Gohar Abbas ◽  
Hashim Farooq ◽  
I. Zeba

Abstract A sequence of in situ measurements points the presence of non-thermal species in the profile of particle distributions. This study highlights the role of such energetic electrons on the wave-spectrum. Using Vlasov–Maxwell’s model, the dispersion relations of the parallel propagating modes along with the space scale of damping are discussed using non-relativistic bi-Maxwellian and bi-Kappa distribution functions under the weak field approximation, i.e., ω − k . v > Ω 0 $\left\vert \omega -\mathbf{k}.\mathbf{v}\right\vert { >}{{\Omega}}_{0}$ . Power series and asymptotic expansions of plasma dispersion functions are performed to derive the modes and spatial damping of waves, respectively. The role of these highly energetic electrons is illustrated on real frequency and anomalous damping of R and L-modes which is in fact controlled by the parameter κ in the dispersion. Further, we uncovered the effect of external magnetic field and thermal anisotropy on such spatial attenuation. In global perspective of the kinetic model, it may be another step.


Until now, most experiments have succeeded in testing relativistic gravity only in its extreme weak-field limit. Because of the strong self-gravity of neutron stars, observations of pulsars in binary systems provide a unique opportunity for probing the strong-field régime of relativistic gravity. The two basic approaches to using binary pulsar measurements as probes of relativistic gravity are reviewed: the phenomenological (‘parametrized post-keplerian’ formalism) and the alternative-theory approach (multidimensional space of possible theories). The experimental constraints recently derived from the actual timing observations of three binary pulsars are summarized. General relativity passes these new, strong-field tests with complete success.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1693
Author(s):  
Asher Yahalom

The general theory of relativity (GR) is symmetric under smooth coordinate transformations, also known as diffeomorphisms. The general coordinate transformation group has a linear subgroup denoted as the Lorentz group of symmetry, which is also maintained in the weak field approximation to GR. The dominant operator in the weak field equation of GR is thus the d’Alembert (wave) operator, which has a retarded potential solution. Galaxies are huge physical systems with dimensions of many tens of thousands of light years. Thus, any change at the galactic center will be noticed at the rim only tens of thousands of years later. Those retardation effects are neglected in the present day galactic modelling used to calculate rotational velocities of matter in the rims of the galaxy and surrounding gas. The significant differences between the predictions of Newtonian instantaneous action at a distance and observed velocities are usually explained by either assuming dark matter or by modifying the laws of gravity (MOND). In this paper, we will show that, by taking general relativity seriously without neglecting retardation effects, one can explain the radial velocities of galactic matter in the M33 galaxy without postulating dark matter. It should be stressed that the current approach does not require that velocities v are high; in fact, the vast majority of galactic bodies (stars, gas) are substantially subluminal—in other words, the ratio of vc≪1. Typical velocities in galaxies are 100 km/s, which makes this ratio 0.001 or smaller. However, one should consider the fact that every gravitational system, even if it is made of subluminal bodies, has a retardation distance, beyond which the retardation effect cannot be neglected. Every natural system, such as stars and galaxies and even galactic clusters, exchanges mass with its environment, for example, the sun loses mass through solar wind and galaxies accrete gas from the intergalactic medium. This means that all natural gravitational systems have a finite retardation distance. The question is thus quantitative: how large is the retardation distance? For the M33 galaxy, the velocity curve indicates that the retardation effects cannot be neglected beyond a certain distance, which was calculated to be roughly 14,000 light years; similar analysis for other galaxies of different types has shown similar results. We demonstrate, using a detailed model, that this does not require a high velocity of gas or stars in or out of the galaxy and is perfectly consistent with the current observational knowledge of galactic and extra galactic material content and dynamics.


1986 ◽  
Vol 114 ◽  
pp. 411-416
Author(s):  
I. G. Dymnikova

The gravitational time delay of signals in a gravitational field of a rotating massive body is considered both in a weak field approximation and in a strong field caused by a rotating black hole. The expressions describing the time of propagation of signals are obtained by integrating the light geodesics of the Kerr metric in a frame reference of a distant observer using the Boyer-Lindquist coordinates and assuming that the wave length of radiation is much less than the characteristic scale of the field. The existence of the asymmetry in the time delay is shown depending on the mutual orientation of a photon propagation direction and of the rotation axis. As a result of this asymmetry, the effects of relative time delay are predicted and calculated for the signals focused by a rotating gravitational lens.


Author(s):  
Gulmina Zaman Babar ◽  
Abdullah Zaman Babar ◽  
Farruh Atamurotov

Abstract We have studied the null geodesics in the background of the Kerr–Newman black hole veiled by a plasma medium using the Hamilton–Jacobi method. The influence of black hole’s charge and plasma parameters on the effective potential and the generic photon orbits has been investigated. Furthermore, our discussion embodies the effects of black hole’s charge, plasma and the inclination angle on the shadow cast by the gravity with and without the spin parameter. We examined the energy released from the black hole as a result of the thermal radiations, which exclusively depends on the size of the shadow. The angle of deflection of the massless particles is also explored considering a weak-field approximation. We present our results in juxtaposition to the analogous black holes in General Relativity, particularly the Schwarzschild and Kerr black hole.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
A. F. Santos ◽  
J. Ramos ◽  
Faqir C. Khanna

Studies about a formal analogy between the gravitational and the electromagnetic fields lead to the notion of Gravitoelectromagnetism (GEM) to describe gravitation. In fact, the GEM equations correspond to the weak-field approximation of the gravitation field. Here, a non-abelian extension of the GEM theory is considered. Using the Thermo Field Dynamics (TFD) formalism to introduce temperature effects, some interesting physical phenomena are investigated. The non-abelian GEM Stefan-Boltzmann law and the Casimir effect at zero and finite temperatures for this non-abelian field are calculated.


Sign in / Sign up

Export Citation Format

Share Document