Nonlinear mixed convective Williamson nanofluid flow with the suspension of gyrotactic microorganisms

Author(s):  
Shuang-Shuang Zhou ◽  
M. Ijaz Khan ◽  
Sumaira Qayyum ◽  
B. C. Prasannakumara ◽  
R. Naveen Kumar ◽  
...  

This investigation aims to present the thermally developed bioconvection flow of Williamson nanoliquid over an inclined stretching cylinder in presence of linear mixed convection and nonuniform heat source/sink. The activation energy and suspension of gyrotactic microorganisms are accounted with applications of bioconvection phenomenon. Appropriate nondimensional variables are opted to attain the dimensionless form of flow equations. The resulting momentum, energy, concentration and motile density equations are abridged to highly coupled and nonlinear in nature. The numerical treatment is followed for the solution procedure by employing the shooting method. The influence of some relevant dimensionless parameters is discoursed graphically along with physical justifications. Moreover, the impact of several dimensionless parameters on skin friction and Nusselt number is obtained and listed in tables. It is observed that the velocity of fluid shows a decreasing variation for Williamson fluid parameter. The change in unsteadiness parameter and heat source parameter enhanced the nanofluid temperature. The motile microorganisms profile declines with bioconvection constant and bio-convection Lewis number.

2017 ◽  
Vol 11 ◽  
pp. 22-32 ◽  
Author(s):  
K. Ganesh Kumar ◽  
Bijjanal Jayanna Gireesha ◽  
B.C. Prasannakumara ◽  
Oluwole Daniel Makinde

This paper explore the Marangoni boundary layer flow in a Casson nano liquid over a stretching sheet. The effect of chemical reaction and uniform heat source/sink are taken into the account. The standard nonlinear system is resolved numerically via Runge-Kutta based shooting scheme. Role of substantial parameters on flow fields as well as on heat and mass transportation rates are determined and conferred in depth through graphs.From the investigation it reveals that, the Marangoni number plays a connecting role between the velocity and temperature gradients on the boundary surface. Further,the higher values of Lewis number and chemical reaction parameter reduces the solutal thermal boundary layer thickness decreases.


2017 ◽  
Vol 377 ◽  
pp. 111-126 ◽  
Author(s):  
C. Sulochana ◽  
G.P Ashwinkumar ◽  
Naramgari Sandeep

In this study, we investigated the 2D MHD flow of a dissipative Maxwell nanofluid past an elongated sheet with uneven heat source/sink, Brownian moment and thermophoresis effects. The flow governing PDEs are transmuted into nonlinear ODEs adopting the suitable similarity transmissions. Further, the RK-4 technique is employed to acquire the numerical solutions. The impact of pertinent parameters such as thermal radiation, frictional heating, irregular heat source/sink, biot number, Brownian moment and thermophoresis on the flow quantities such as velocity, thermal and concentration fields likewise friction factor, heat and mass transfer rates are bestowed with the succour of graphs and tables. Dual nature is witnessed for Newtonian and non-Newtonian fluid cases. It is noticed that the heat and mass transfer rate in Newtonian fluid larger as compared with non-Newtonian fluid.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohamed Dhia Massoudi ◽  
Mohamed Bechir Ben Hamida ◽  
Mohammed A. Almeshaal ◽  
Yahya Ali Rothan ◽  
Khalil Hajlaoui

Purpose The purpose of this paper is to examine numerically the magnetohydrodynamic (MHD) free convection and thermal radiation heat transfer of single walled carbon nanotubes-water nanofluid within T-inverted shaped corrugated cavity comprising porous media including uniform heat source/sink for solar energy power plants applications. Design/methodology/approach The two-dimensional numerical simulation is performed by drawing on Comsol Multiphysics program, based on the finite element process. Findings The important results obtained show that increasing numbers of Rayleigh and Darcy and the parameter of radiation enhance the flow of convection heat. Furthermore, by increasing the corrugation height, the convection flow increases, but it decreases with the multiplication of the corrugation height. The use of a flat cavity provides better output than a corrugated cavity. Originality/value The role of surface corrugation parameters on the efficiency of free convection and heat transfer of thermal radiation within the porous media containing the T-inverted corrugated cavity including uniform heat source/sink under the impact of Lorentz forces has never been explored. A contrast is also established between a flat cavity and a corrugated one.


2018 ◽  
Vol 8 (12) ◽  
pp. 2588 ◽  
Author(s):  
Sayer Alharbi ◽  
Abdullah Dawar ◽  
Zahir Shah ◽  
Waris Khan ◽  
Muhammad Idrees ◽  
...  

In this article, we have briefly examined the entropy generation in magnetohydrodynamic (MHD) Eyring–Powell fluid over an unsteady oscillating porous stretching sheet. The impact of thermal radiation and heat source/sink are taken in this investigation. The impact of embedded parameters on velocity function, temperature function, entropy generation rate, and Bejan number are deliberated through graphs, and discussed as well. By studying the entropy generation in magnetohydrodynamic Eyring–Powell fluid over an unsteady oscillating porous stretching sheet, the entropy generation rate is reduced with escalation in porosity, thermal radiation, and magnetic parameters, while increased with the escalation in Reynolds number. Also, the Bejan number is increased with the escalation in porosity and magnetic parameter, while increased with the escalation in thermal radiation parameter. The impact of skin fraction coefficient and local Nusselt number are discussed through tables. The partial differential equations are converted to ordinary differential equation with the help of similarity variables. The homotopy analysis method (HAM) is used for the solution of the problem. The results of this investigation agree, satisfactorily, with past studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hassan Waqas ◽  
Umar Farooq ◽  
Aqsa Ibrahim ◽  
M. Kamran Alam ◽  
Zahir Shah ◽  
...  

AbstractNanofluids has broad applications such as emulsions, nuclear fuel slurries, molten plastics, extrusion of polymeric fluids, food stuffs, personal care products, shampoos, pharmaceutical industries, soaps, condensed milk, molten plastics. A nanofluid is a combination of a normal liquid component and tiny-solid particles, in which the nanomaterials are immersed in the liquid. The dispersion of solid particles into yet another host fluid will extremely increase the heat capacity of the nanoliquid, and an increase of heat efficiency can play a significant role in boosting the rate of heat transfer of the host liquid. The current article discloses the impact of Arrhenius activation energy in the bioconvective flow of Burger nanofluid by an inclined wall. The heat transfer mechanism of Burger nanofluid is analyzed through the nonlinear thermal radiation effect. The Brownian dispersion and thermophoresis diffusions effects are also scrutinized. A system of partial differential equations are converted into ordinary differential equation ODEs by using similarity transformation. The multi order ordinary differential equations are reduced to first order differential equations by applying well known shooting algorithm then numerical results of ordinary equations are computed with the help of bvp4c built-in function Matlab. Trends with significant parameters via the flow of fluid, thermal, and solutal fields of species and the area of microorganisms are controlled. The numerical results for the current analysis are seen in the tables. The temperature distribution increases by rising the temperature ratio parameter while diminishes for a higher magnitude of Prandtl number. Furthermore temperature-dependent heat source parameter increases the temperature of fluid. Concentration of nanoparticles is an decreasing function of Lewis number. The microorganisms profile decay by an augmentation in the approximation of both parameter Peclet number and bioconvection Lewis number.


2019 ◽  
Vol 13 (1) ◽  
pp. 4558-4574 ◽  
Author(s):  
K. Anantha Kumar ◽  
B. Ramadevi ◽  
V. Sugunamma ◽  
J. V. Ramana Reddy

This report presents the flow and heat transfer characteristics on magnetohydrodynamic non-Newtonian fluid across a wedge near the stagnation point. The fluid flow is time independent and laminar. The radiation and irregular heat sink/source effects are deemed. The system of nonlinear ODEs is attained from PDEs by choosing the proper similarity transformations. Further, the well-known shooting and Runge-Kutta methods are utilized to acquire the problem’s solution subject to assumed boundary conditions. Figures are outlined to emphasize the impact of several parameters on the fields of velocity and temperature. Further, the rate of heat transfer and friction factor are also anticipated and portrayed with the assistance of table. Results indicate that the curves of velocity diminish with shrinking parameter, magnetic field parameter and material fluid parameter. Also the non-uniform heat source/sink parameters play a crucial role in the heat transfer performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
T. Sajid ◽  
M. Sagheer ◽  
S. Hussain

The principle aim of the current communication is to scrutinize the impact of distinguished effects like variable thermal conductivity and variable molecular diffusivity on non-Newtonian Reiner–Philippoff fluid moving over a stretchable surface. The process of heat transfer is carried out in the presence of nonlinear thermal radiation, variable thermal conductivity, and heat generation/absorption. Furthermore, the study of mass transfer phenomena is carried out in the existence of variable molecular diffusivity. The PDEs regarding our model are renovated into ODEs by utilizing similarity transformation. Furthermore, the dimensionless model is tackled with the help of the RK4 method in conjunction with the shooting technique. The effects of different physical parameters that emerged during the numerical simulation on mass transfer rate, heat transfer rate, and velocity field are portrayed in the form of tables and graphs. It is noteworthy that an elevation in the heat source/sink parameters causes a reduction in the temperature profile. Moreover, a positive variation in the species diffusivity parameter augments the mass fraction field. A variation in the fluid parameter is found to be significantly affecting the shear thinning and shear thickening behaviour of the fluid. Reliability of the numerical outcomes is judged by comparing the obtained outcomes with the already available literature. The article is unique in its sense that the heat and mass transfer analysis of Reiner–Philippoff fluid under the aforementioned effects has not been investigated yet.


Inventions ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 95
Author(s):  
Bheemasandra M. Shankaralingappa ◽  
Ballajja C. Prasannakumara ◽  
Bijjanal J. Gireesha ◽  
Ioannis E. Sarris

The current study focuses on the characteristics of flow, heat, and mass transfer in the context of their applications. There has been a lot of interest in the use of non-Newtonian fluids in biological and technical disciplines. Having such a substantial interest in non-Newtonian fluids, our goal is to explore the flow of Oldroyd-B liquid over a stretching sheet by considering Cattaneo–Christov double diffusion and heat source/sink. Furthermore, the relaxation chemical reaction and thermophoretic particle deposition are considered in the modelling. The equations that represent the indicated flow are changed to ordinary differential equations (ODEs) by choosing relevant similarity variables. The reduced equations are solved using the Runge–Kutta–Fehlberg fourth–fifth order technique (RKF-45) and a shooting scheme. Physical descriptions are strategized and argued using graphical representations to provide a clear understanding of the behaviour of dimensionless parameters on dimensionless velocity, concentration, and temperature profiles. The results reveal that the rising values of the rotation parameter lead to a decline in the fluid velocity. The rise in values of relaxation time parameters of temperature and concentration decreases the thermal and concentration profiles, respectively. The increase in values of the heat source/sink parameter advances the thermal profile. The rise in values of the thermophoretic and chemical reaction rate parameters declines the concentration profile.


Sign in / Sign up

Export Citation Format

Share Document