Dual-band bandpass filter using composite metamaterial resonator

2016 ◽  
Vol 30 (07) ◽  
pp. 1650079 ◽  
Author(s):  
Yu-Ting Jin ◽  
Li-Ming Si ◽  
Qing-Le Zhang ◽  
Yu-Ming Wu ◽  
Xin Lv

A dual-band bandpass filter at X-band is proposed using composite metamaterial resonator consisting of an outer square closed-ring resonator (SCRR) and two inner electric inductance–capacitance (ELC) resonators. Numerical simulation and microwave measurement reveal that the filter exhibits two passbands centered at 8.76 GHz and 11.04 GHz, with 3 dB bandwidths of 130 MHz and 290 MHz, respectively. The complex dispersion relation of the filter is further derived based on the effective medium theory, where two balanced composite right-/left-handed bands are found, i.e. lines exhibiting two left-handed and two right-handed bands alternating. The proposed filter may find useful in dual-band or multi-band wireless communication systems.

2021 ◽  
Vol 10 (1) ◽  
pp. 232-240
Author(s):  
Mussa Mabrok ◽  
Zahriladha Zakaria ◽  
Yully Erwanti Masrukin ◽  
Tole Sutikno ◽  
Hussein Alsariera

Due to the progression growth of multiservice wireless communication systems in a single device, multiband bandpass filter has attract a great attention to the end user. Therefore, multiband bandpass filter is a crucial component in the multiband transceivers systems which can support multiple services in one device. This paper presents a design of dual-band bandpass filter at 2.4 GHz and 3.5 GHz for WLAN and WiMAX applications. Firstly, the wideband bandpass filter is designed at a center frequency of 3 GHz based on quarter-wavelength short circuited stub. Three types of defected microstrip structure (DMS) are implemented to produce a wide notch band, which are T-inversed shape, C-shape, and U- Shape. Based on the performance comparisons, U-shaped DMS is selected to be integrated with the bandpass filter. The designed filter achieved two passbands centered at 2.51 GHz and 3.59 GHz with 3 dB bandwidth of 15.94 % and 15.86 %. The proposed design is very useful for wireless communication systems and its applications such as WLAN and WiMAX 


2017 ◽  
Vol 9 (3) ◽  
pp. 493-497 ◽  
Author(s):  
Yeganeh Pourasad ◽  
Gholamreza Karimi

A compact dual-band microstrip bandpass filter (BPF) is presented for application at the frequencies 2.4 and 5.84 GHz. The proposed main resonator consists of two L-shaped resonators. To improve the upper-stopband of the proposed filter, modified U-Shaped resonators are accepted. The operation mechanism of the filter is investigated based on proffered equivalent-circuit model and transformation function. The sketched dual-band BPF attends the insertion loss less than 0.1 and 0.4 dB Also the return loss is 26 and 28 dB at 2.4 and 5.84, respectively. This proffered filter structure is proper for Bluetooth and wireless local area networks and other wireless communication systems. An overall good agreement between measured and simulated results is observed.


2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Ji-Xu Zhu ◽  
Peng Bai ◽  
Jia-Fu Wang

A new type of hybrid resonant circuit model is investigated theoretically and experimentally. The resonant model consists of a right hand (RH) patch part and a composite right and left handed (CRLH) part (RH + CRLH), which determines a compact size and also a convenient frequency modulation characteristic for the proposed antennas. For experimental demonstration, two antennas are fabricated. The former dual-band antenna operating at f-1=3.5 GHz (Wimax) and f+1=5.25 GHz (WLAN) occupies an area of 0.21λ0×0.08λ0, and two dipolar radiation patterns are obtained with comparable gains of about 6.1 and 6.2 dB, respectively. The latter antenna advances in many aspects such as an ultrasmall size of only 0.16λ0×0.08λ0, versatile radiation patterns with a monopolar pattern at f0=2.4 GHz (Bluetooth), and a dipole one at f+1=3.5 GHz (Wimax) and also comparable antenna gains. Circuit parameters are extracted and researched. Excellent performances of the antennas based on hybrid resonators predict promising applications in multifunction wireless communication systems.


This paper proposes a compact sized dual band microstrip patch antenna with microstrip feed line. The patch of antenna is a rectangular shaped patch which has a circular slot in the patch for multiband operations. This antenna covers frequency bands, centered at 2.4GHz, 3.3GHz, which is useful for the C-band and X-band operations. In this paper, a microstrip patch antenna with compact size of 21x17x1.6 mm in rectangular shape. This antenna is designed on FR4 substrate (Dielectric constant=4.4) of thickness h=1.6mm with ground of size 25x10 mm. The proposed structure were simulated on CADFEKO simulation software. This proposed antenna is suitable for multiband wireless communication systems and mobile equipments.


Author(s):  
Yue Cui ◽  
Kai-Da Xu ◽  
Ying-Jiang Guo ◽  
Qiang Chen

Abstract A half-mode substrate integrated waveguide (HMSIW) combined with spoof surface plasmon polariton (SSPP) structure is proposed to realize bandpass filter (BPF) characteristic and miniaturization, which is termed as the half-mode substrate integrated plasmonic waveguide (HMSIPW). Compared with the conventional HMSIW structure having identical cutoff frequency, this new design of HMSIPW not only supports SSPP modes, but also realizes a transversal size reduction of 19.4% and longitudinal reduction of more than 60%. Then, a diplexer based on two back-to-back placed HMSIPW BPFs is designed, and it has only one row of metallized via holes to further reduce the transversal size. The experimental prototypes of the filters and diplexer have been manufactured, and the measurement results agree well with simulation ones. Due to the size miniaturization and simple structure, the proposed designs will have many potentials in the integrated devices and circuits for wireless communication systems.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 98786-98791 ◽  
Author(s):  
Jianchun Xu ◽  
Ke Bi ◽  
Xiaojun Zhai ◽  
Yanan Hao ◽  
Klaus D. Mcdonald-Maier

2015 ◽  
Vol 05 (04) ◽  
pp. 1550035 ◽  
Author(s):  
Fei Yu ◽  
Jun Wang ◽  
Jiafu Wang ◽  
Hua Ma ◽  
Hongliang Du ◽  
...  

In this paper, we propose a novel transmit/reflect switchable frequency selective surface (FSS) in millimeter wave band based on the effective medium theory under quasi-static limit, which is designed with square-hole elements cut from continuum dielectric plates. The building elements of the surface are composed of all dielectric metamaterial rather than metal material. With proper structural design and parameters tuning, the resonance frequencies can be tuned appropriately. The frequency response of the surface can be switched from that of a reflecting structure to a transmitting one by rotating the surface [Formula: see text], which means under different incident polarizations. The reflective response can be realized due to the effect of electric and magnetic resonances. Theoretical analysis shows that the reflective response arises from impedance mismatching by electric and magnetic resonances. And the transmitting response is the left-handed passband, arises from the coupling of the electric and magnetic resonances. In addition, effective electromagnetic parameters and the dynamic induced field distributions are analyzed to explain the mechanism of the responses. The method can also be used to design switchable all-dielectric FSS with continuum structures in other frequencies.


1998 ◽  
Vol 511 ◽  
Author(s):  
T. E. Huber ◽  
Leo Silber ◽  
Frank Boccuzzi

ABSTRACTGlass Capillary Arrays (GCA) are low density columnar monolithic structures made of soda-lime glass. This structure, in which 76% of volume between the columns, the channels, is void, also has a greatly reduced dielectric constant in comparison with bulk glass. We have measured the index of refraction and absorption of samples of GCA's in the X-band, 8 × 109 Hz to 1.2×1010 Hz, for various orientations of the channels with respect to the polarization. For channels perpendicular to the polarization direction we have measured an index of refraction of 1.15. In comparison the index of refraction of (bulk) soda-lime glass is 2.6. We also examined the absorption in the far-infrared (FIR) frequency range between 6×1011 Hz and 6×1012 Hz. In this frequency range we obtain a k2 dependence due to losses in the glass matrix at higher frequencies. The results of the X-band and FIR results are interpreted in terms of an effective medium theory of the real and imaginary part of the dielectric constant of the composite.


Sign in / Sign up

Export Citation Format

Share Document