Dispersion engineering of a As2Se3-based strip/slot hybrid waveguide for mid-infrared broadband wavelength conversion

2016 ◽  
Vol 30 (28) ◽  
pp. 1650336 ◽  
Author(s):  
Zhanqiang Hui ◽  
Lingxuan Zhang ◽  
Leiran Wang ◽  
Wenfu Zhang

An arsenic tri-selenide-based strip/slot hybrid waveguide with a single horizontal silica slot is proposed to achieve an extremely low and flat dispersion with three zero dispersion wavelengths. By adjusting the geometrical structural parameters of the hybrid waveguide, dispersion tailoring is fully obtained. The flat group velocity dispersion varying between ±[Formula: see text]0.08 ps2/(m) is obtained over a 1253 nm bandwidth. The parameters of effective area, nonlinear coefficient, and third-order dispersion are all investigated. Moreover, a compact on-chip all-optical wavelength converter is designed based on degenerate four-wave mixing in this waveguide. The dependencies of conversion efficiency and conversion bandwidth on the pump wavelength are discussed. The impact of pump power and signal power on the conversion efficiency is also investigated. The results show that a maximal conversion efficiency of −0.46 dB, and a 3-dB conversion bandwidth of 830 nm in the mid-infrared is achieved.

2019 ◽  
Vol 29 (4) ◽  
pp. 117
Author(s):  
Mashaan Attalla Mahmood

In this research a mathematical approximation for modeling a PCFs is derived. The effective refractive index neff of the clad region obtained by this relation will be used to study the properties of the PCFs such as normalized frequency, effective area, group velocity dispersion and the nonlinear coefficient. All these properties are studied when the holes of the PCFs are filled with air ,or with any material like chloroform. The merit of our mathematical approximation is that, neff can be easily and directly calculated, then the dispersion profile can be controlled by fine manipulating the (d/Λ) of circular or elliptical air holes in PCF cladding. The results show good agreement with published works. The MATLAB 2010 program is used in this study, which is the most successful program to get appropriate diagrams and results


Laser Physics ◽  
2021 ◽  
Vol 31 (12) ◽  
pp. 126206
Author(s):  
A Rajesh ◽  
S Chandru ◽  
S Robinson

Abstract Defective hybrid cladding through a silicon nanocrystal-core-structured photonic crystal fiber intended for high pump power supercontinuum proliferation is discussed in this paper. The cladding comprehends a hybrid approach of a hexagonal air hole in the outer section and a petal-structured air hole in the inner layer with a twisted pattern. Such a procedure with an air hole in the cladding section with a silicon nanocore displays high nonlinearity and negative dispersion at the communication window for varying pulse widths with 20 kW pump power. The impact of structural parameters of the proposed structure on the optical constraints is discussed, namely, dispersion, nonlinearity and group-velocity dispersion for wavelengths ranging from 0.45 µm to 1.85 µm. The proposed structure with optimized structural parameters provides high nonlinearity of about 6.38 × 106 W−1 km−1 with negative dispersion of −70.19 ps (nm km)−1 at 1550 nm.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
I. S. Amiri ◽  
Ahmed Nabih Zaki Rashed ◽  
Abd Elnaser A. Mohammed ◽  
Mohamed Basuony Aboelazm

AbstractWavelength division multiplexing (WDM) is a very important technique to utilize the bandwidth of optical fiber; multiple channels can be transmitted in the same fiber cable at the same time, and each channel has individual wavelength. At different network node, it’s required to add or drop wavelength, wavelength converter process is a technique responsible for converting the wavelength of signal to other wavelength up or down from the original value. This paper has presented a proposed model to generate inverted and non-inverted wavelength conversion by using single wide band traveling wave semiconductor optical amplifier (WBSOA), based on cross-gain modulation. The investigation of conversion efficiency (η) and quality factor (Q), versus pump power ranged value from −30 to 0 dB m, and input signal power is 0 dB m with data rate 25 Gb/s, are studied for up and down-wavelength conversion, “co-propagation” and “counter-propagation”, respectively. The simulation results indicate that, to get maximum conversion efficiency and maximum quality factor by using single WBSOA, the pump power should be located between −30 to −20 dB m for maximum conversion efficiency and equal to −10 dB m for maximum quality factor, that for up- and down-wavelength conversion, co-propagation and counter-propagation.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 607
Author(s):  
Yuxi Zhao ◽  
Rongcheng Liu ◽  
Fan Yan ◽  
Dawei Zhang ◽  
Junjin Liu

The windblown sand-induced degradation of glass panels influences the serviceability and safety of these panels. In this study, the degradation of glass panels subject to windblown sand with different impact velocities and impact angles was studied based on a sandblasting test simulating a sandstorm. After the glass panels were degraded by windblown sand, the surface morphology of the damaged glass panels was observed using scanning electron microscopy, and three damage modes were found: a cutting mode, smash mode, and plastic deformation mode. The mass loss, visible light transmittance, and effective area ratio values of the glass samples were then measured to evaluate the effects of the windblown sand on the panels. The results indicate that, at high abrasive feed rates, the relative mass loss of the glass samples decreases initially and then remains steady with increases in impact time, whereas it increases first and then decreases with an increase in impact angle such as that for ductile materials. Both visible light transmittance and effective area ratio decrease with increases in the impact time and velocities. There exists a positive linear relationship between the visible light transmittance and effective area ratio.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 420
Author(s):  
Ang Deng ◽  
Wonkeun Chang

We numerically investigate the effect of scaling two key structural parameters in antiresonant hollow-core fibers—dielectric wall thickness of the cladding elements and core size—in view of low-loss mid-infrared beam delivery. We demonstrate that there exists an additional resonance-like loss peak in the long-wavelength limit of the first transmission band in antiresonant hollow-core fibers. We also find that the confinement loss in tubular-type hollow-core fibers depends strongly on the core size, where the degree of the dependence varies with the cladding tube size. The loss scales with the core diameter to the power of approximately −5.4 for commonly used tubular-type hollow-core fiber designs.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1230
Author(s):  
Jessica Manzi ◽  
Annalisa Paolone ◽  
Oriele Palumbo ◽  
Domenico Corona ◽  
Arianna Massaro ◽  
...  

In this manuscript, we report a detailed physico-chemical comparison between the α- and β-polymorphs of the NaMnO2 compound, a promising material for application in positive electrodes for secondary aprotic sodium batteries. In particular, the structure and vibrational properties, as well as electrochemical performance in sodium batteries, are compared to highlight differences and similarities. We exploit both laboratory techniques (Raman spectroscopy, electrochemical methods) and synchrotron radiation experiments (Fast-Fourier Transform Infrared spectroscopy, and X-ray diffraction). Notably the vibrational spectra of these phases are here reported for the first time in the literature as well as the detailed structural analysis from diffraction data. DFT+U calculations predict both phases to have similar electronic features, with structural parameters consistent with the experimental counterparts. The experimental evidence of antisite defects in the beta-phase between sodium and manganese ions is noticeable. Both polymorphs have been also tested in aprotic batteries by comparing the impact of different liquid electrolytes on the ability to de-intercalated/intercalate sodium ions. Overall, the monoclinic α-NaMnO2 shows larger reversible capacity exceeding 175 mAhg−1 at 10 mAg−1.


Author(s):  
Jiao Chi ◽  
Hongjun Liu ◽  
Zhaolu Wang ◽  
Nan Huang

Abstract Graphene plasmons with enhanced localized electric field have been used for boosting the light-matter interaction in linear optical nano-devices. Meanwhile, graphene is an excellent nonlinear material for several third-order nonlinear processes. We present a theoretical investigation of the mechanism of plasmon-enhanced third-order nonlinearity susceptibility of graphene nanoribbons. It is demonstrated that the third-order nonlinearity susceptibility of graphene nanoribbons with excited graphene surface plasmon polaritons can be an order of magnitude larger than the intrinsic susceptibility of a continuous graphene sheet. Combining these properties with the relaxed phase matching condition due to the ultrathin graphene, we propose a novel plasmon-enhanced mid-infrared wavelength converter with arrays of graphene nanoribbons. The wavelength of sig-nal light is in mid-infrared range, which can excite the tunable surface plasmon polaritons in arrays of graphene nanoribbons. The efficiency of the converter from mid-infrared to near-infrared wavelength can be remarkably improved by 60 times compared with the graphene sheet without graphene plasmons. This work provides a novel idea for the efficient application of graphene in the nonlinear optical nano-devices. The proposed mid-infrared wavelength converter is compact, tunable and has promising potential in graphene-based mid-infrared detector with high detection efficiency.


Sign in / Sign up

Export Citation Format

Share Document