PREFERABLE ORIENTATION OF CRYSTALLINE THIN-FILM OF MODIFIED BNN SYSTEM

1989 ◽  
Vol 03 (06) ◽  
pp. 465-470 ◽  
Author(s):  
MASAYUKI TSUKIOKA ◽  
TASUKU MASHIO ◽  
MASAJI SHIMAZU ◽  
TAKESHI NAKAMURA

Using rf-sputtering method, modified BNN ( Ba 2 NaNb 5 O 15) thin-films, which are highly aligned, were prepared on a polished surface of a stainless steel plate and on a polished silicon wafer. It was found that preferably aligned thin-films were successfully obtained only when modified Nb-rich BNN target was used. Preferable orientation of these thin-films was confirmed by X-ray diffraction measurement. In order to find the correlation between preferable orientation and separation from plasma center, X-ray measurement was carried out at several points on the thin-film sputtered on a long stainless steel substrate (5×100 mm ). The result indicated that preferable orientation was dominant near the position of plasma center. In order to distinguish whether the strong X-ray peak observed in the preferably aligned BNN thin-film is due to (200) peak of Nb 2 O 5 or (440) peak of BNN, X-ray measurements and the following quantitative analyses; fluorescent X-ray, ICP (Induced Coupled Radio Frequency Plasma) and an Atomic Absorption Method, were carried out for films sputtered from Nb-rich BNN target. The results reveal that the thin-films include considerable quantity of barium and sodium. This suggests that the highly aligned thin-film is composed of modified BNN and not Nb 2 O 5.

2013 ◽  
Vol 284-287 ◽  
pp. 324-328
Author(s):  
Tao Hsing Chen ◽  
Tzu Yu Liao

This study utilizes radio frequency magnetron sputtering(RF-sputtering) to deposit GZO transparent conductive film and Ti thin film on the same corning glass substrate, then treats GZO/Ti thin film with rapid thermal annealing. The annealing temperature is 300, 500 and 550°C, respectively. Moreover, the effects of process parameters on resistivity and optical properties are investigated. The deposited rate, microstructure, thickness and Optical transmission of Ti:GZO thin film are performed. For example, the thicknesses of films were determined by -step profilometer. The crystalline characteristics of thin films were investigated by X-ray diffraction (XRD). Ga and Ti concentration in ZnO film were determined by energy dispersive X-ray spectroscopy (EDS). The electrical properties of the Ti:GZO thin films were measured by Four point probe. The optical properties of Ti:GZO thin films were examined using UV–vis spectrophotometer. The results show that the transmittance of Ti:GZO thin film exhibited an excellent transparency in the visible light field. The resistivity of Ti:GZO decrease with increasing annealing temperature.


2006 ◽  
Vol 320 ◽  
pp. 53-56 ◽  
Author(s):  
Toru Onoue ◽  
Naoki Wakiya ◽  
Koichi Seo ◽  
Takanori Kiguchi ◽  
Nobuyasu Mizutani ◽  
...  

Pb(Zr0.05Ti0.95)O3/(La,Sr)CoO3 thin films were prepared by pulsed laser deposition (PLD) on SrTiO3(001) substrates. Phase transition behavior of Pb(Zr0.05Ti0.95)O3 (PZT) was investigated using high temperature X-ray diffraction (HT-XRD) and high-temperature electrical measurement. The phase transition temperature of PZT thin film is larger than bulk one. In 100 and 200nm-thickness epitaxial PZT thin films, the phase transition temperatures obtained from X-ray diffraction measurement and electrical property measurement are in good agreement.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


2012 ◽  
Vol 490-495 ◽  
pp. 3486-3490
Author(s):  
Qiang Yu ◽  
Zhen Chen ◽  
Zhong Cheng Guo

In order to prepare a new type of anode material, stainless steel was selected as substrate material. The β-PbO2 coating on stainless steel substrate was prepared under the appropriate plating solution, and the PbO2-MnO2 coating was prepared with thermal decomposition. The crystal structure was determined by X-ray diffraction; Surface morphology was test by Scanning Electron Microscopy; the energy spectrum was used to determine element mass-fraction and the ratio of atomic number of the coatings.


2011 ◽  
Vol 44 (5) ◽  
pp. 983-990 ◽  
Author(s):  
Chris Elschner ◽  
Alexandr A. Levin ◽  
Lutz Wilde ◽  
Jörg Grenzer ◽  
Christian Schroer ◽  
...  

The electrical and optical properties of molecular thin films are widely used, for instance in organic electronics, and depend strongly on the molecular arrangement of the organic layers. It is shown here how atomic structural information can be obtained from molecular films without further knowledge of the single-crystal structure. C60 fullerene was chosen as a representative test material. A 250 nm C60 film was investigated by grazing-incidence X-ray diffraction and the data compared with a Bragg–Brentano X-ray diffraction measurement of the corresponding C60 powder. The diffraction patterns of both powder and film were used to calculate the pair distribution function (PDF), which allowed an investigation of the short-range order of the structures. With the help of the PDF, a structure model for the C60 molecular arrangement was determined for both C60 powder and thin film. The results agree very well with a classical whole-pattern fitting approach for the C60 diffraction patterns.


MRS Advances ◽  
2016 ◽  
Vol 1 (39) ◽  
pp. 2711-2716 ◽  
Author(s):  
V. Vasilyev ◽  
J. Cetnar ◽  
B. Claflin ◽  
G. Grzybowski ◽  
K. Leedy ◽  
...  

ABSTRACTAlN thin film structures have many useful and practical piezoelectric and pyroelectric properties. The potential enhancement of the AlN piezo- and pyroelectric constants allows it to compete with more commonly used materials. For example, combination of AlN with ScN leads to new structural, electronic, and mechanical characteristics, which have been reported to substantially enhance the piezoelectric coefficients in solid-solution AlN-ScN compounds, compared to a pure AlN-phase material.In our work, we demonstrate that an analogous alloying approach results in considerable enhancement of the pyroelectric properties of AlN - ScN composites. Thin films of ScN, AlN and Al1-x ScxN (x = 0 – 1.0) were deposited on silicon (004) substrates using dual reactive sputtering in Ar/N2 atmosphere from Sc and Al targets. The deposited films were studied and compared using x-ray diffraction, XPS, SEM, and pyroelectric characterization. An up to 25% enhancement was observed in the pyroelectric coefficient (Pc = 0.9 µC /m2K) for Sc1-xAlxN thin films structures in comparison to pure AlN thin films (Pc = 0.71 µC/m2K). The obtained results suggest that Al1-x ScxN films could be a promising novel pyroelectric material and might be suitable for use in uncooled IR detectors.


1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


2013 ◽  
Vol 710 ◽  
pp. 170-173
Author(s):  
Lian Ping Chen ◽  
Yuan Hong Gao

It is hardly possible to obtain rare earth doped CaWO4thin films directly through electrochemical techniques. A two-step method has been proposed to synthesize CaWO4:(Eu3+,Tb3+) thin films at room temperature. X-ray diffraction, energy dispersive X-ray analysis, spectrophotometer were used to characterize their phase, composition and luminescent properties. Results reveal that (Eu3+,Tb3+)-doped CaWO4films have a tetragonal phase. When the ratio of n (Eu)/n (Tb) in the solution is up to 3:1, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Tb element; on the contrary, when the ratio in the solution is lower than 1:4, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Eu element. Under the excitation of 242 nm, sharp emission peaks at 612, 543, 489 and 589 nm have been observed for CaWO4:(Eu3+,Tb3+) thin films.


2010 ◽  
Vol 93-94 ◽  
pp. 231-234
Author(s):  
B. Hongthong ◽  
Satreerat K. Hodak ◽  
Sukkaneste Tungasmita

Strontium substituted hydroxyapatite(SrHAp) were fabricated both in the form of powder as reference and thin film by using inorganic precursor reaction. The sol-gel process has been used for the deposition of SrHAp layer on stainless steal 316L substrate by spin coating technique, after that the films were annealed in air at various temperatures. The chemical composition of SrHAp is represented (SrxCa1-x)5(PO4)3OH, where x is equal to 0, 0.5 and 1.0. Investigations of the phase structure of SrHAp were carried out by using X-ray diffraction technique (XRD). The results showed that strontium is incorporated into hydroxyapatite where its substitution for calcium increases in the lattice parameters, and Sr3(PO4)2 can be detected at 900°C. The SEM micrographs showed that SrHAp films exhibited porous structure before develop to a cross-linking structure.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Gyu-bong Cho ◽  
Tae-hoon Kwon ◽  
Tae-hyun Nam ◽  
Sun-chul Huh ◽  
Byeong-keun Choi ◽  
...  

LiNiO2thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2thin film. The ZrO2-coated LiNiO2thin film provided an improved discharge capacity compared to bare LiNiO2thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2coating layer.


Sign in / Sign up

Export Citation Format

Share Document