INFLUENCE OF TRAFFIC CORRELATION ON THE PERFORMANCE OF NETWORK-ON-CHIP DESIGNS

2010 ◽  
Vol 19 (03) ◽  
pp. 655-669 ◽  
Author(s):  
FANG WANG

Advance in semiconductor technologies enables seamless integration of hundreds of cores on a single silicon die, which requires high communication performance. To deal with the increasing communication complexity of System-on-Chip (SoC), Network-on-Chip (NoC) has been recently proposed as an alternative to the conventional point-to-point links and bus based communication fabrics. In practice, to facilitate NoC design evaluation and optimization, Poisson traffic or Bernoulli traffic models are generally assumed. However, actual measurements showed that real high speed network traffic always has strong correlations. The objective of this paper is to investigate the impact of traffic correlations on the performance of NoC design. Experimental results show that traffic correlation degrades the performance of NoC design and unrealistic traffic assumptions may yield unacceptable designs.

Author(s):  
Ho Duc Tam Linh ◽  
Nguyen Van Quang ◽  
Dao Duy Tu ◽  
Nguyen Van An ◽  
Vuong Quang Phuoc

2016 ◽  
Vol 7 (2) ◽  
pp. 86-92 ◽  
Author(s):  
Józef Kuczmaszewski ◽  
Ireneusz Zagórski ◽  
Piotr Zgórniak

Abstract This paper presents an overview of the state of knowledge on temperature measurement in the cutting area during magnesium alloy milling. Additionally, results of own research on chip temperature measurement during dry milling of magnesium alloys are included. Tested magnesium alloys are frequently used for manufacturing elements applied in the aerospace industry. The impact of technological parameters on the maximum chip temperature during milling is also analysed. This study is relevant due to the risk of chip ignition during the machining process.


Author(s):  
Shiyamala S. ◽  
Vijay Soorya J. ◽  
Sanjay P. S. ◽  
Sathappan K.

With different constraint length (K), time scale, and code rate, modified MAP (maximum a posteriori) decoder architecture using folding technique, which has a linear life time chart, is developed, and dedicated turbo codes will be placed in a network-on-chip for various wireless applications. Folded techniques mitigated the number of latches used in interleaving and deinterleaving unit by adopting forward and backward resource utilizing method to M-2, where M is the number of rows and end-to-end delay get reduced to 2M. By replacing conventional full adder by high speed adder using 2 x 1 multiplexer to calculate the forward state metrics and reverse state metrics will minimize the power consumption utilization in an effective manner. In s similar way, CORDIC (Coordinated ROtation DIgital Computer) algorithm is used to calculate the LLR value and confer a highly precise value with less computational complexity by means of only shifting and adding methods.


Author(s):  
Liang Guang ◽  
Ethiopia Nigussie ◽  
Juha Plosila ◽  
Hannu Tenhunen

Self-aware and adaptive Network-on-Chip (NoC) with dual monitoring networks is presented. Proper monitoring interface is an essential prerequisite to adaptive system reconfiguration in parallel on-chip computing. This work proposes a DMC (dual monitoring communication) architecture to support self-awareness on the NoC platform. One type of monitoring communication is integrated with data channel, in order to trace the run-time profile of data communication in high-speed on-chip networking. The other type is separate from the data communication, and is needed to report the run-time profile to the supervising monitor. Direct latency monitoring on mesochronous NoC is presented as a case study and is directly traced in the integrated communication with a novel latency monitoring table in each router. The latency information is reported by the separate monitoring communication to the supervising monitor, which reconfigures the system to adjust the latency, for instance by dynamic voltage and frequency scaling. With quantitative evaluation using synthetic traces and real applications, the effectiveness and efficiency of direct latency monitoring with DMC architecture is demonstrated. The area overhead of DMC architecture is estimated to be small in 65nm CMOS technology.


Automatika ◽  
2019 ◽  
Vol 61 (1) ◽  
pp. 92-98
Author(s):  
M. Devanathan ◽  
V. Ranganathan ◽  
P. Sivakumar

Author(s):  
Miloš Krstic ◽  
Xin Fan ◽  
Eckhard Grass ◽  
Luca Benini ◽  
M. R. Kakoee ◽  
...  

In this paper the authors present the concept and evaluation results of a complex GALS ASIC demonstrator in 40 nm CMOS process. This chip, named Moonrake, compares synchronous and GALS synchronization technology in a homogeneous experimental setting: same baseline designs, same manufacturing process, same die. The chip validates GALS technology for both point-to-point and network-centric on-chip communications, demonstrating its potentials for different applications. The design analysis, measurement and test results confirm the potential of GALS approach for the scaled technologies, showing the significant benefits in respect to area, power, and EMI when it comes to the complex system implementation. Furthermore, 91% of the tests performed on the GALS network-on-chip test structures completed successfully, validating the timing robustness of new area and latency-efficient synchronization schemes and proving that the design flow for GALS synchronization technology can be implemented by means of mainstream industrial tools.


2013 ◽  
Vol 9 (3) ◽  
pp. 322-331 ◽  
Author(s):  
K. Swaminathan ◽  
G. Lakshminarayanan ◽  
Seok-Bum Ko

2017 ◽  
Vol 27 (02) ◽  
pp. 1850022 ◽  
Author(s):  
Ling Wang ◽  
Terrence Mak

In 2D mesh Network on Chips (NoCs), fault-tolerant algorithms usually deactivate healthy nodes to form rectangular or convex fault blocks. However, the deactivated nodes can possibly form an available tunnel in a faulty block. We propose a method to discover these tunnels, and propose a fault-tolerant routing algorithm to route messages through such paths such that the overall communication performance is improved. In addition, the algorithm is deadlock-free by prohibiting some turns. Simulation results demonstrate that the reuse of the sacrificed nodes in fault blocks can significantly reduce the average message latency.


Sign in / Sign up

Export Citation Format

Share Document