A 12-bit 200-MHz CURRENT-STEERING DAC WITH CALIBRATION

2014 ◽  
Vol 23 (04) ◽  
pp. 1450053 ◽  
Author(s):  
FAN XIA ◽  
YIQIANG ZHAO ◽  
GONGYUAN ZHAO

In this paper, a 12-bit current-steering digital-to-analog converter (DAC) with high static and dynamic linearity is proposed. Compared to traditional intrinsic-accuracy DACs, the static linearity is obtained by a series of subsidiary DACs which can shorten the calibration cycle with smaller additional circuits. The presented DAC is based on the segmented architecture and layout has been carefully designed so that better synchronization among the current sources can be achieved. The DAC is implemented in a standard 0.18-μm CMOS technology and the current source block occupies less than 0.5 mm2. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) performance is ± 0.3 LSB and ± 0.5 LSB, respectively, and the spurious free dynamic range (SFDR) is 75 dB at 1 MHz signal frequency and 200 MHz sampling frequency.

2014 ◽  
Vol 23 (01) ◽  
pp. 1450004 ◽  
Author(s):  
XIAOBO XUE ◽  
XIAOLEI ZHU ◽  
QIFENG SHI ◽  
LENIAN HE

In this paper, a 12-bit current-steering digital-to-analog converter (DAC) employing a deglitching technique is proposed. The deglitching technique is realized by lowering the voltage swing of the control signal as well as by using a method of glitch counteraction (GC). A new switch–driver structure is designed to enable the effectiveness of the GC and provide sufficient driving capability under a low supply voltage. Moreover, the control signal's rise/fall asymmetry which increases the glitch error can be suppressed by using the proposed switch–driver structure. The 12-bit DAC is implemented in 180 nm CMOS technology. The measurement results show that the spurious free dynamic range (SFDR) at low signal frequency is 78.8 dB, and it is higher than 70 dB up to 60 MHz signal frequency at 400 MS/s. The measured INL and DNL are both less than ±0.6 LSB.


2018 ◽  
Vol 27 (09) ◽  
pp. 1850142 ◽  
Author(s):  
Mehdi Bandali ◽  
Omid Hashemipour

A two-dimensional digital-to-analog converter (DAC) structure compatible with dynamic element matching (DEM) methods is presented. Unlike the DACs using segmented structure for employing DEM, the new structure randomizes inter-segment error. This advantage is achieved because of the characteristics of the algorithm of two-dimensional decoding. The simulation results in 180[Formula: see text]nm CMOS technology, 319.72[Formula: see text]MHz signal frequency and 800[Formula: see text]MS/s sample rate for an 8-bit two-dimensional DAC utilizing the presented structure, shows 14.94[Formula: see text]dB spurious-free dynamic range (SFDR) improvement compared to the SFDR of the same DAC without employing the presented structure. Also, the IMD3 of the DAC employing the presented structure for [Formula: see text][Formula: see text]MHz and [Formula: see text][Formula: see text]MHz is 50.1[Formula: see text]dB.


2014 ◽  
Vol 513-517 ◽  
pp. 4555-4558
Author(s):  
Weng Yuan Li ◽  
Teng Xiao Jiang

In order to satisfy the higher and higher transmission rate and broadband requirement of modern communication, a 4-bit 5 GS/s digital-to-analog converter (DAC) integrated circuit is presented. The DAC circuit is based on current steering architecture and segmented with a 4 bit unary. The circuit is designed and analyzed in TSMC 0.18 μm CMOS technology. The chip size is 0.675 mm 0.525 mm. Simulation results show that the maximum integral nonlinearity (INL) is 0.15 LSB. The DAC can achieve a spurious-free dynamic range (SFDR) of 22.76 dB under a clock frequency of 5 GHz with an input signal frequency of 250 MHz, while the power consumption is 11.6 mW.


2015 ◽  
Vol 643 ◽  
pp. 101-108 ◽  
Author(s):  
Shaiful Nizam Mohyar ◽  
Masahiro Murakami ◽  
Atsushi Motozawa ◽  
Haruo Kobayashi ◽  
Osamu Kobayashi ◽  
...  

This paper presents algorithms for improving spurious-free dynamic range (SFDR) of current-steering digital-to-analog converters (DACs) — targeted at communication applications — by minimizing both current-source mismatches and glitches. Conventional segmented current-steering DACs suffer from static mismatches among current sources which cause nonlinearity and degrade SFDR, though glitch energy is relatively small. The data-weighted averaging (DWA) algorithm can reduce static current source mismatch effects, but it increases the effects of glitch energy. Here we investigate the use of both conventional Switching-Sequence Post-Adjustment (SSPA) calibration and One–Element-Shifting (OES) methods in order to reduce the effects of both nonlinearity and glitch energy. For further improvement, we propose and investigate a fully-digital combined algorithm to reduce static current source mismatch effects with minimal increase in the glitch energy. We also did simulations of the effect of combining these two compensation methods. Our MATLAB simulations show that the combined algorithm can improve SFDR performance by 24 dB, 22dB and 2dB compared to conventional thermometer-coded, one-element-shifting and SSPA methods respectively in some conditions. When we take current mismatch into account, the combined algorithm causes glitch energy to increase by only 0.02 to 0.2 % compared to the other three methods alone.


Author(s):  
Jayeshkumar J. Patel ◽  
Amisha P. Naik

A compact current-mode Digital-to-Analog converter (DAC) suitable for biomedical application is repesented in this paper .The designed DAC is binary weighted in 180nm CMOS technology with 1.8V supply voltage. In this implementation, authors have focused on calculaton of Non linearity error say INL and DNL for 4 bit DAC having various type of switches: NMOS, PMOS and Transmission Gate. The implemented DAC uses lower area and power compared to unary architecture due to absence of digital decoders. The desired value of Integrated non linearity (INL) and Differential non linearity (DNL) for DAC for are within a range of +0.5LSB. Result obtained in this works for INL and DNL for the case DAC using Transmission Gate is +0.34LSB and +0.38 LSB respectively with 22mW power dissipation.


Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 464 ◽  
Author(s):  
Wang ◽  
Guo ◽  
Zhou ◽  
Wu ◽  
Luan ◽  
...  

A 3GS/s 12-bit current-steering digital-to-analog converter (DAC) fabricated in 55 nm complementary metal–oxide–semiconductor (CMOS) technology has been presented. A partial randomization dynamic element matching (PRDEM) method based on switching sequence optimization is proposed to mitigate the mismatch effect and suppress the harmonic distortion with low hardware complexity. In the switching current cell, the cascode structure together with “always-ON” small current sources are used to keep the output impedance high and uniform. A compact layout of the switching current array is carefully designed, featuring short wires routing and small parasitic capacitance. According to the measured results at 3GS/s, this DAC demonstrates a spurious-free dynamic range (SFDR) of 74.64 dBc at low frequency and 50 dBc at 1.5 GHz output. The chip occupies an active area of 0.2 × 0.48 mm2 and consumes a total power of 495 mW.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 563
Author(s):  
Jorge Pérez-Bailón ◽  
Belén Calvo ◽  
Nicolás Medrano

This paper presents a new approach based on the use of a Current Steering (CS) technique for the design of fully integrated Gm–C Low Pass Filters (LPF) with sub-Hz to kHz tunable cut-off frequencies and an enhanced power-area-dynamic range trade-off. The proposed approach has been experimentally validated by two different first-order single-ended LPFs designed in a 0.18 µm CMOS technology powered by a 1.0 V single supply: a folded-OTA based LPF and a mirrored-OTA based LPF. The first one exhibits a constant power consumption of 180 nW at 100 nA bias current with an active area of 0.00135 mm2 and a tunable cutoff frequency that spans over 4 orders of magnitude (~100 mHz–152 Hz @ CL = 50 pF) preserving dynamic figures greater than 78 dB. The second one exhibits a power consumption of 1.75 µW at 500 nA with an active area of 0.0137 mm2 and a tunable cutoff frequency that spans over 5 orders of magnitude (~80 mHz–~1.2 kHz @ CL = 50 pF) preserving a dynamic range greater than 73 dB. Compared with previously reported filters, this proposal is a competitive solution while satisfying the low-voltage low-power on-chip constraints, becoming a preferable choice for general-purpose reconfigurable front-end sensor interfaces.


2012 ◽  
Vol 10 ◽  
pp. 201-206
Author(s):  
G. Bertotti ◽  
A. Laifi ◽  
E. Di Gioia ◽  
M. Masoumi ◽  
N. Dodel ◽  
...  

Abstract. An 8 bit segmented current steering DAC is presented for the compensation of mismatch of sensors with current output arranged in a large arrays. The DAC is implemented in a 1.8 V supply voltage 180 nm standard CMOS technology. Post layout simulations reveal that the design target concerning a sampling frequency of 2.6 MHz is exceeded, worst-case settling time equals 60.6 ns. The output current range is 0–10 μA, which translates into an LSB of 40 nA. Good linearity is achieved, INL < 0.5 LSB and DNL < 0.4 LSB, respectively. Static power consumption with the outputs operated at a voltage of 0.9 V is approximately 10 μW. Dynamic power, mainly consumed by switching activity of the digital circuit parts, amounts to 100 μW at 2.6 MHz operation frequency. Total area is 38.6 × 2933.0 μm2.


Sign in / Sign up

Export Citation Format

Share Document