Dynamic Energy Reduction in TCAM Match-Line Sensing Using Charge-Sharing and Positive Feedback

2019 ◽  
Vol 28 (14) ◽  
pp. 1950238
Author(s):  
Syed Iftekhar Ali ◽  
Safayat Bin Hakim

Network routers use ternary content addressable memory (TCAM) for high-speed table look-up. A match-line (ML) sensing scheme for TCAM combining charge-sharing and positive feedback is presented. The objective is to simplify the ML sense amplifier (MLSA) of existing charge-sharing scheme while reducing ML energy consumption during look-up. The look-up has been performed in two steps. In the first step, a segment of each TCAM word is compared with the search key to detect large percentage of the mismatched words. The detected mismatched words are deactivated in the second step to reduce energy consumption. In the second step, the charge stored in a matched ML first segment is shared with second ML segment. Use of positive feedback in this step makes the MLSA circuit simple. Post-layout simulations implemented using 180[Formula: see text]nm 1.8[Formula: see text]V CMOS logic have been performed. In addition to lower scheme complexity and 16.5% reduction in circuit area, the proposed scheme provides dynamic energy saving up to 5.5% and peak power reduction of 52% compared to existing state-of-the-art charge-sharing technique.

Author(s):  
Zhengfeng Huang ◽  
Zian Su ◽  
Tianming Ni ◽  
Qi Xu ◽  
Haochen Qi ◽  
...  

As the demand for low-power and high-speed logic circuits increases, the design of differential flip-flops based on sense-amplifier (SAFF), which have excellent power and speed characteristics, has become more and more popular. Conventional SAFF (Con SAFF) and improved SAFF designs focus more on the improvement of speed and power consumption, but ignore their Single-Event-Upset (SEU) sensitivity. In fact, SAFF is more susceptible to particle impacts due to the small voltage swing required for differential input in the master stage. Based on the SEU vulnerability of SAFF, this paper proposes a novel scheme, namely cross-layer Dual Modular Redundancy (DMR), to improve the robustness of SAFF. That is, unit-level DMR technology is performed in the master stage, while transistor-level stacking technology is used in the slave stage. This scheme can be applied to some current typical SAFF designs, such as Con SAFF, Strollo SAFF, Ahmadi SAFF, Jeong SAFF, etc. Detailed HSPICE simulation results demonstrate that hardened SAFF designs can not only fully tolerate the Single Node Upset of sensitive nodes, but also partially tolerate the Double Node Upset caused by charge sharing. Besides, compared with the conventional DMR hardened scheme, the proposed cross-layer DMR hardened scheme not only has the same fault-tolerant characteristics, but also greatly reduces the delay, area and power consumption.


2016 ◽  
Vol 25 (04) ◽  
pp. 1630002 ◽  
Author(s):  
Syed Iftekhar Ali ◽  
Md Shafiqul Islam ◽  
Mohammad Rakibul Islam

Content addressable memory (CAM) can perform high-speed table look-up with bit level masking capability. This feature makes CAMs extremely attractive for high-speed packet forwarding and classification in network routers. High-speed look-up implies all the CAM word entries to be accessed and compared with a search word to find a suitable match in a single clock cycle. This parallel search activity requires large energy consumption which needs to be reduced. In this paper, a review of the energy reduction techniques of CAM is presented. A comparative study of some popular techniques has been made with the help of simulations carried out in this work and published results.


In network routers, Ternary Content Addressable Memory (TCAM)[1] based search engines take an important role. One of the improved versions of Content Addressable Memory (CAM) is TCAM. For high speed and broader searching operation TCAM is used. Unlike normal CAM, TCAM has 3 logic states: 0, 1, ‘X’. In TCAM within one single clock cycle, search operation can be performed. That is why it is called special type of memory. Also, quick search ability is one of the popular features of TCAM. To compare the search and stored data, TCAM array acts parallel in every location. But high power dissipation is the main disadvantage of TCAM. To overcome this power dissipation in this paper we proposed a low power TCAM implementation by using Reversible logic.[2] Reversible logic has less heat dissipating characteristics property with respect to irreversible gate. Also, Reversible logic has ultra-low power characteristics feature. In recent past it has been proved that reversible gates can implement any Boolean function.


Author(s):  
V V SATYANARAYANA SATTI ◽  
SRIDEVI SRIADIBHATLA

Content-addressable memory (CAM) is a prominent hardware for high-speed lookup search, but consumes larger power. Traditional NOR and NAND match-line (ML) architectures suffer from a short circuit current path sharing and charge sharing respectively during precharge. The recently proposed precharge-free CAM suffers from high search delay and the subsequently proposed self-controlled precharge-free CAM suffers from high power consumption. This paper presents a hybrid self-controlled precharge-free (HSCPF) CAM architecture, which uses a novel charge control circuitry to reduce search delay as well as power consumption. The proposed and existing CAM ML architectures were developed using CMOS 45nm technology node with a supply voltage of 1 V. Simulation results show that the proposed HSCPF CAM-type ML design reduces power consumption and search delay effectively when compared to recent precharge-free CAM-type ML architectural designs.


Nanophotonics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1765-1773
Author(s):  
Yi Zhang ◽  
Jianfeng Gao ◽  
Senbiao Qin ◽  
Ming Cheng ◽  
Kang Wang ◽  
...  

Abstract We design and demonstrate an asymmetric Ge/SiGe coupled quantum well (CQW) waveguide modulator for both intensity and phase modulation with a low bias voltage in silicon photonic integration. The asymmetric CQWs consisting of two quantum wells with different widths are employed as the active region to enhance the electro-optical characteristics of the device by controlling the coupling of the wave functions. The fabricated device can realize 5 dB extinction ratio at 1446 nm and 1.4 × 10−3 electrorefractive index variation at 1530 nm with the associated modulation efficiency V π L π of 0.055 V cm under 1 V reverse bias. The 3 dB bandwidth for high frequency response is 27 GHz under 1 V bias and the energy consumption per bit is less than 100 fJ/bit. The proposed device offers a pathway towards a low voltage, low energy consumption, high speed and compact modulator for silicon photonic integrated devices, as well as opens possibilities for achieving advanced modulation format in a more compact and simple frame.


Sign in / Sign up

Export Citation Format

Share Document