A −4–4 V Input Common-Mode Range Bidirectional Current Shunt Monitor

2020 ◽  
Vol 29 (14) ◽  
pp. 2050221
Author(s):  
S. Huang ◽  
Peijun Liu ◽  
Quanzhen Duan ◽  
Yuemin Ding ◽  
Zhen Meng

This study describes a novel bidirectional current shunt monitor (CSM) circuit operating at both positive and negative common-mode (CM) voltages. The proposed CSM circuit mainly consists of two comparators, three error amplifiers, several current-mirror transistors and a few resistors. One comparator is used to detect current flowing direction, and the other one is utilized to ensure good operation of CSM circuit with both positive and negative CM voltages. The proposed CSM circuit has been implemented in SMIC 0.18[Formula: see text][Formula: see text]m standard CMOS process and its performances have been verified by simulations. The simulated results show that the proposed CSM circuit, at a supply voltage of 5[Formula: see text]V and with an input CM voltage range from [Formula: see text] to 4[Formula: see text]V, can sense a voltage difference of 4–40[Formula: see text]mV and keep a constant scaled gain of 100[Formula: see text]V/V. The gain error is less than 0.65% and the common-mode rejection ratio (CMRR) is higher than 130[Formula: see text]dB at 1[Formula: see text]kHz. Simulation results show that the output voltage of CSM circuit varies linearly with the CSM input sense voltage.

Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1156
Author(s):  
Lorenzo Benvenuti ◽  
Alessandro Catania ◽  
Giuseppe Manfredini ◽  
Andrea Ria ◽  
Massimo Piotto ◽  
...  

The design of ultra-low voltage analog CMOS integrated circuits requires ad hoc solutions to counteract the severe limitations introduced by the reduced voltage headroom. A popular approach is represented by inverter-based topologies, which however may suffer from reduced finite DC gain, thus limiting the accuracy and the resolutions of pivotal circuits like analog-to-digital converters. In this work, we discuss the effects of finite DC gain on ultra-low voltage ΔΣ modulators, focusing on the converter gain error. We propose an ultra-low voltage, ultra-low power, inverter-based ΔΣ modulator with reduced finite-DC-gain sensitivity. The modulator employs a two-stage, high DC-gain, switched-capacitor integrator that applies a correlated double sampling technique for offset cancellation and flicker noise reduction; it also makes use of an amplifier that implements a novel common-mode stabilization loop. The modulator was designed with the UMC 0.18 μm CMOS process to operate with a supply voltage of 0.3 V. It was validated by means of electrical simulations using the CadenceTM design environment. The achieved SNDR was 73 dB, with a bandwidth of 640 Hz, and a clock frequency of 164 kHz, consuming only 200.5 nW. It achieves a Schreier Figure of Merit of 168.1 dB. The proposed modulator is also able to work with lower supply voltages down to 0.15 V with the same resolution and a lower power consumption despite of a lower bandwidth. These characteristics make this design very appealing in sensor interfaces powered by energy harvesting sources.


2017 ◽  
Vol 26 (11) ◽  
pp. 1750169 ◽  
Author(s):  
Francesco Centurelli ◽  
Pietro Monsurrò ◽  
Gaetano Parisi ◽  
Pasquale Tommasino ◽  
Alessandro Trifiletti

This paper presents a fully differential class-AB current mirror OTA that improves the common-mode behavior of a topology that presents very good differential-mode performance but poor common-mode rejection ratio (CMRR). The proposed solution requires a low-current auxiliary circuit driven by the input signal, to compensate the effect of the common-mode input component. Simulations in 40-nm CMOS technology show a net reduction of common-mode gain of more than 90[Formula: see text]dB without affecting the differential-mode behavior; a sample-and-hold amplifier exploiting the proposed amplifier has also been simulated.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 103
Author(s):  
P Sahithi ◽  
K Hari Kishore ◽  
E Raghuveera ◽  
P Gopi Krishna

The paper describes a voltage level shifter for power efficient applications which is simulated in tanner spice tool using 45nm technology. The conservative voltage level shifter is designed by using 6 transistors. The voltage level shifter cell generally used for shifting the voltage range of the signal from one voltage domain to another. This is required when the chip operate at multiple voltage domains. The circuit parameters like leakage voltage and average power dissipation are calculate for this circuit. Mainly level shifter consists of two voltage levels. One is low logic supply voltage (VDDL) another one is high logic supply voltage (VDDH). The simulation results of proposed level shifter with Wilson current mirror by 45nm technology for the input frequency of 1MHZ, the power dissipation of 0.177nW with 3db gain of 9.78.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 594
Author(s):  
Tahesin Samira Delwar ◽  
Abrar Siddique ◽  
Manas Ranjan Biswal ◽  
Prangyadarsini Behera ◽  
Yeji Choi ◽  
...  

A 24 GHz highly-linear upconversion mixer, based on a duplex transconductance path (DTP), is proposed for automotive short-range radar sensor applications using the 65-nm CMOS process. A mixer with an enhanced transconductance stage consisting of a DTP is presented to improve linearity. The main transconductance path (MTP) of the DTP includes a common source (CS) amplifier, while the secondary transconductance path (STP) of the DTP is implemented as an improved cross-quad transconductor (ICQT). Two inductors with a bypass capacitor are connected at the common nodes of the transconductance stage and switching stage of the mixer, which acts as a resonator and helps to improve the gain and isolation of the designed mixer. According to the measured results, at 24 GHz the proposed mixer shows that the linearity of output 1-dB compression point (OP1dB) is 3.9 dBm. And the input 1-dB compression point (IP1dB) is 0.9 dBm. Moreover, a maximum conversion gain (CG) of 2.49 dB and a noise figure (NF) of 3.9 dB is achieved in the designed mixer. When the supply voltage is 1.2 V, the power dissipation of the mixer is 3.24 mW. The mixer chip occupies an area of 0.42 mm2.


2021 ◽  
Vol 11 (6) ◽  
pp. 2528 ◽  
Author(s):  
Francesco Centurelli ◽  
Riccardo Della Sala ◽  
Giuseppe Scotti ◽  
Alessandro Trifiletti

A novel, inverter-based, fully differential, body-driven, rail-to-rail, input stage topology is proposed in this paper. The input stage exploits a replica bias control loop to set the common mode current and a common mode feed-forward strategy to set its output common mode voltage. This novel cell is used to build an ultralow voltage (ULV), ultralow-power (ULP), two-stage, unbuffered operational amplifier. A dual path compensation strategy is exploited to improve the frequency response of the circuit. The amplifier has been designed in a commercial 130 nm CMOS technology from STMicroelectronics and is able to operate with a nominal supply voltage of 0.3 V and a power consumption as low as 11.4 nW, while showing about 65 dB gain, a gain bandwidth product around 3.6 kHz with a 50 pF load capacitance and a common mode rejection ratio (CMRR) in excess of 60 dB. Transistor-level simulations show that the proposed circuit outperforms most of the state of the art amplifiers in terms of the main figures of merit. The results of extensive parametric and Monte Carlo simulations have demonstrated the robustness of the proposed circuit to PVT and mismatch variations.


Author(s):  
Frederick Ray I. Gomez ◽  
Maria Theresa G. De Leon ◽  
John Richard E. Hizon

This paper presents a design and simulation study of a common-gate with common-source active balun circuit implemented in a standard 90-nm complementary metal-oxide semiconductor (CMOS) process.  The active balun design is intended for worldwide interoperability for microwave access (WiMAX) application, with operating frequency of 5.8 GHz and supply voltage of 1 V.  Measurements are taken for parameters namely gain difference, phase difference, and noise figure.  The common-source active balun design achieved a minimal gain difference of  0.04 dB, phase difference of 180 ± 1.5 degrees, and noise figure of 8.76 dB, which are comparable to past active balun designs and researches.  The design eventually achieved a low power consumption of 4.45 mW.


2014 ◽  
Vol 23 (03) ◽  
pp. 1450042 ◽  
Author(s):  
LIANG LIANG ◽  
ZHANGMING ZHU ◽  
YINTANG YANG

This paper proposes a novel second-order temperature-compensated CMOS current reference which exploits a new self-biased current source for first-order temperature compensation and a resistor-free widlar current mirror for second-order temperature compensation. Moreover, by deriving the temperature coefficient (TC) of the reference current, the temperature compensation condition equations together with a design method of minimizing the thermal drift in a required temperature range are presented. Based on these, the circuit is designed in a standard 0.18 μm CMOS process and achieves a very low TC of only 16.9 ppm/°C in a temperature range between -40°C and 120°C, with 1 μA reference current at 27°C. Besides, the current reference can operate at supply voltage down to 1.3 V, with a good supply regulation of 0.5%/V. At 27°C, its power consumption is 8.93 μW.


Sign in / Sign up

Export Citation Format

Share Document