scholarly journals Wheeler’s it from bit proposal in loop quantum gravity

2019 ◽  
Vol 28 (10) ◽  
pp. 1950129
Author(s):  
Jarmo Mäkelä

As an attempt to realize Wheeler’s “it-from-bit proposal” that physics should be reduced to simple yes–no questions, we consider a model of loop quantum gravity, where the only allowed values of the quantum numbers [Formula: see text] at the punctures [Formula: see text] of the spin network on the spacelike two surfaces of spacetime are [Formula: see text] and [Formula: see text]. When [Formula: see text], the puncture is in the vacuum, and it does not contribute to the area of the two surface, whereas when [Formula: see text], the puncture is in an excited state, and the allowed values of the associated quantum number [Formula: see text] are [Formula: see text] and [Formula: see text]. As a consequence, the spin network used as a model of spacetime is analogous to a system of particles with spin [Formula: see text], and every puncture carries exactly one bit of information. When applied to spacetimes with horizon, our model enables us to find an explicit expression for the partition function of spacetime. Using this partition function we may, among other things, obtain the Bekenstein–Hawking entropy law for black holes. When applied to cosmological models with horizon, the partition function predicts a cosmic phase transition in the early universe, where the cosmological constant went through a dramatic decrease and the matter of the universe was created out of the vacuum.

2011 ◽  
Vol 26 (24) ◽  
pp. 1817-1823 ◽  
Author(s):  
A. GHOSH ◽  
P. MITRA

The two ways of counting microscopic states of black holes in the U(1) formulation of loop quantum gravity: one counting all allowed spin network labels j, m and the other only m labels, are discussed in some detail. The constraints on m are clarified and the map between the flux quantum numbers and m discussed. Configurations with |m|=j, which are sometimes sought after, are shown to be important only when large areas are involved. The discussion is extended to the SU(2) formulation.


2005 ◽  
Vol 14 (12) ◽  
pp. 2301-2305
Author(s):  
JOHN SWAIN

Black hole thermodynamics suggests that the maximum entropy that can be contained in a region of space is proportional to the area enclosing it rather than its volume. We argue that this follows naturally from loop quantum gravity and a result of Kolmogorov and Bardzin' on the the realizability of networks in three dimensions. This represents an alternative to other approaches in which some sort of correlation between field configurations helps limit the degrees of freedom within a region. It also provides an approach to thinking about black hole entropy in terms of states inside rather than on its surface. Intuitively, a spin network complicated enough to imbue a region with volume only lets that volume grow as quickly as the area bounding it.


2015 ◽  
Vol 24 (10) ◽  
pp. 1550074 ◽  
Author(s):  
L. Mullick ◽  
P. Bandyopadhyay

We have considered here the emergence of diffeomorphism symmetry in quantum gravity in the framework of the quantization of a fermion. It is pointed out that a closed loop having the holonomy associated with the SU(2) gauge group is realized from the rotation of the direction vector associated with the quantization of a fermion depicting spin degrees of freedom which appear as SU(2) gauge bundle. During the formation of a loop, a noncyclic path with open ends can be mapped onto a closed loop when the holonomy involves q-deformed gauge group SUq(2). This gives rise to q-deformed diffeomorphism and helps to realize diffeomorphism invariance in quantum gravity through a sequence of q-deformed diffeomorphism in the limit q = 1. We can consider adiabatic iteration such that the quasispin associated with the quantum group SUq(2) gradually evolves as the time dependent deformation parameter q changes and in the limit q = 1, we achieve the standard spin. This essentially depicts the evolution of spin network as the loop is being formed and links fermionic degrees of freedom with loop quantum gravity.


2016 ◽  
Vol 25 (13) ◽  
pp. 1645004
Author(s):  
Pisin Chen ◽  
Hsu-Wen Chiang ◽  
Yao-Chieh Hu

We introduce a new type of the spacetime quantization based on the spinorial description suggested by loop quantum gravity. Specifically, we build our theory on a string theory inspired [Formula: see text] worldsheet action. Because of its connection with quantum gravity theories, our proposal may in principle link back to string theory, connect to loop quantum gravity where SU(2) is suggested as the fundamental symmetry, or serve as a Lorentzian spin network. We derive the generalized uncertainty principle and demonstrate the holographic nature of our theory. Due to the quantization of spacetime, geodesics in our theory are fuzzy, but the fuzziness is shown to be much below conceivable astrophysical bounds.


Author(s):  
Jakub Mielczarek

The article addresses the possibility of implementing spin network states, used in the loop quantum gravity approach to Planck scale physics on an adiabatic quantum computer. The discussion focuses on applying currently available technologies and analyzes a concrete example of a D-Wave machine. It is introduced a class of simple spin network states which can be implemented on the Chimera graph architecture of the D-Wave quantum processor. However, extension beyond the currently available quantum processor topologies is required to simulate more sophisticated spin network states. This may inspire new generations of adiabatic quantum computers. A possibility of simulating loop quantum gravity is discussed, and a method of solving a graph non-changing scalar (Hamiltonian) constraint with the use of adiabatic quantum computations is proposed. The presented results establish a basis for the future simulations of Planck scale physics, specifically quantum cosmological configurations, on quantum annealers.


Author(s):  
Kedar Pansare ◽  
Meghraj Parab ◽  
Vrushabh Parmar ◽  
Yashwantrao Mitnasala ◽  
Rajni Bahuguna

The existence and the mysteries of the universe could not be explained by using just 3 spatial dimensions. There was a need to think of higher dimensions as a tool to explain the phenomena happening in our universe. Therefore, unified theories such as Loop Quantum Gravity and Superstring Theory were proposed. We will be taking an overview of these theories in order to get some idea about each.


2016 ◽  
Vol 25 (08) ◽  
pp. 1642005 ◽  
Author(s):  
Emanuele Alesci ◽  
Francesco Cianfrani

Quantum reduced loop gravity is a promising framework for linking loop quantum gravity and the effective semiclassical dynamics of loop quantum cosmology. We review its basic achievements and its main perspectives, outlining how it provides a quantum description of the Universe in terms of a cuboidal graph which constitutes the proper framework for applying loop techniques in a cosmological setting.


2008 ◽  
Vol 23 (24) ◽  
pp. 3891-3899 ◽  
Author(s):  
JIAN-ZHEN CHEN ◽  
JIAN-YANG ZHU

In quantum gravity, we study the evolution of a two-dimensional planar open frozen spin network, in which the color (i.e. the twice spin of an edge) labeling edge changes but the underlying graph remains fixed. The mainly considered evolution rule, the random edge model, is depending on choosing an edge randomly and changing the color of it by an even integer. Since the change of color generally violate the gauge invariance conditions imposed on the system, detailed propagation rule is needed and it can be defined in many ways. Here, we provided one new propagation rule, in which the involved even integer is not a constant one as in previous works, but changeable with certain probability. In random edge model, we do find the evolution of the system under the propagation rule exhibits power-law behavior, which is suggestive of the self-organized criticality (SOC), and it is the first time to verify the SOC behavior in such evolution model for the frozen spin network. Furthermore, the increase of the average color of the spin network in time can show the nature of inflation for the universe.


2015 ◽  
Vol 12 (10) ◽  
pp. 1550112
Author(s):  
Seramika Ariwahjoedi ◽  
Jusak Sali Kosasih ◽  
Carlo Rovelli ◽  
Freddy P. Zen

We derive the Gauss–Codazzi equation in the holonomy and plane-angle representations and we use the result to write a Gauss–Codazzi equation for a discrete (2 + 1)-dimensional manifold, triangulated by isosceles tetrahedra. This allows us to write operators acting on spin network states in (2 + 1)-dimensional loop quantum gravity, representing the 3-dimensional intrinsic, 2-dimensional intrinsic, and 2-dimensional extrinsic curvatures.


Sign in / Sign up

Export Citation Format

Share Document