IMPROVED PROPERTIES OF SnO2 THIN FILMS OBTAINED VIA SPIN COATING METHOD BY VARYING THE SOLUTION CONCENTRATION

2018 ◽  
Vol 25 (04) ◽  
pp. 1850092
Author(s):  
SOUMIA BELHAMRI ◽  
NASR-EDDINE HAMDADOU

The aim of this work is to study the solution concentration effect on the SnO2 thin film properties, which were deposited on glass substrates by spin coating technique and annealed for one hour at 500[Formula: see text]C. X-ray diffraction (XRD) spectra show that the films deposited at various solution concentrations (0.5[Formula: see text]mol/L, 0.7[Formula: see text]mol/L and 1[Formula: see text]mol/L) are polycrystalline with a tetragonal rutile type. Grains have two preferred orientations along the directions (110) and (101) corresponding to 2[Formula: see text] equal to 26.74[Formula: see text] and 34.11[Formula: see text], respectively. We have also noted that the grain size changes between 109[Formula: see text]nm and 178[Formula: see text]nm. However, the film coated at 10 deposition cycles and 0.7[Formula: see text]mol/L solution concentration has a minimum arithmetic average roughness of 0.376 nm. The optical transmittance of the films in the visible spectrum was in the range of 77–84% and the optical band gap gradually decreases with the decrease of the solution concentration from 4.11[Formula: see text]eV to 3.56[Formula: see text]eV.

2008 ◽  
Vol 368-372 ◽  
pp. 524-525 ◽  
Author(s):  
Jian Li ◽  
Shan Liu ◽  
Wei Pan

Co-doped tin oxide thin films were prepared using spin-coating method. Variation of doping content on the magnetic property and optical property were measured. XRD and magnetic measurement shows that Co solubility limit in SnO2 is less than 3%. When the doping content is lower than 3%, the films show good optical transmittance. When the doping content is reached to 10%, the optical transmittance became lower. When the solution is diluted, the optical transmittance drops more slowly.


2018 ◽  
Vol 18 ◽  
pp. 113-117 ◽  
Author(s):  
Abdelkader Hafdallah ◽  
Aimane Guedri ◽  
Mohamed Salah Aida ◽  
Nadhir Attaf

In the present work we prepared conducting and transparent thin films ZnO with different solution concentrations by pyrolysis spray technique on glass substrates. These films are obtained starting from solution of zinc acetate dehydrate [Zn(CH3COO)2.2H2O] dissolved in methanol, at substrate temperature fixed T =350°C with a concentration of solution vary from 0.05-0.2 M. Our interest is on the investigation of solution concentration on the structural and optical properties of these films. The X-ray diffraction (XRD) results showed that the synthesized ZnO films are polycrystalline with preferred orientation along the (002) plane. The optical films characterization was carried out by the UV-Visible transmission. The optical gap and films disorder were deduced from the absorption spectra, The values of optical band gaps vary between 3.24 and 3.43 eV.


2010 ◽  
Vol 09 (04) ◽  
pp. 355-358 ◽  
Author(s):  
T. S. SENTHIL ◽  
M. THAMBIDURAI ◽  
N. MUTHUKUMARASAMY ◽  
R. BALASUNDARAPRABHU

TiO2 thin films have been deposited onto well cleaned glass substrates by sol–gel spin coating method. The prepared TiO2 films have been annealed at different temperatures (350°C, 450°C and 550°C). The structural properties of the films have been studied using X-ray diffraction method and High Resolution Transmission Electron Microscope (HRTEM). The as-deposited films have been found to be amorphous in nature. The crystalline quality has been observed to improve with annealing temperature. The annealed TiO2 films have been found to exhibit anatase phase. The optical properties have been studied using transmittance spectrum.


2013 ◽  
Vol 16 (1) ◽  
pp. 92-100
Author(s):  
Chien Mau Dang ◽  
Dam Duy Le ◽  
Tam Thi Thanh Nguyen ◽  
Dung Thi My Dang

In this study, we have successfully synthesized Fe3+ doped SiO2/TiO2 thin films on glass substrates using the sol-gel dip-coating method. After synthesizing, the samples were annealed at 5000C in the air for 1 hour. The characteristics and optical properties of Fe3+ doped SiO2/TiO2 films were then investigated by X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis) and Fourier transform infrared spectroscopy (FT-IR). An antifogging ability of the glass substrates coated with the fabricated film is investigated and explained by a water contact angle under visible-light. The analyzed results also show that the crystalline phase of TiO2 thin films comprised only the anatase TiO2, but the crystalline size decreased from 8.8 to 5.9 nm. We also observed that the absorption edge of Fe3+- doped SiO2/TiO2 thin films shifted towards longer wavelengths (i.e. red shifted) from 371.7nm to 409.2 nm when the Fe3+-doped concentration increased from 0 to 1 % mol.


2018 ◽  
Vol 36 (3) ◽  
pp. 427-434 ◽  
Author(s):  
S. Benzitouni ◽  
M. Zaabat ◽  
A. Mahdjoub ◽  
A. Benaboud ◽  
B. Boudine

AbstractHeavily In doped zinc oxide (IZO) thin films were deposited on glass substrates by dip-coating method with different concentrations of indium. The effect of heavy In doping on the structural, morphological, optical and electrical properties of ZnO was discussed on the basis of XRD, AFM, UV-Vis spectra and Hall effect measurements. The diffraction patterns of all deposited films were indexed to the ZnO wurtzite structure. However, high In doping damaged the films crystallinity. The highest optical transmittance observed in the visible region (>93 %) exceeded that of ITO: the absolute rival of the most commercial TCOs. The grain size significantly decreased from 140 nm for undoped ZnO to 17.1 nm for IZO with the greatest In ratio. The roughness decreased with increasing In atomic ratio, indicating an improvement in the surface quality. Among all synthesized films, the sample obtained with 11 at.% indium showed the best TCO properties: the highest transmittance (93.5 %) and the lowest resistivity (0.41 Ωcm) with a carrier concentration of 2.4 × 1017 cm−3. These results could be a promising solution for possible photonic and optoelectronic applications.


2018 ◽  
Vol 273 ◽  
pp. 140-145 ◽  
Author(s):  
Dewi Suriyani Che Halin ◽  
Norsuria Mahmed ◽  
Mohd Arif Anuar Mohd Salleh ◽  
A.N. Mohd Sakeri ◽  
Kamrosni Abdul Razak

Ag/TiO2thin films were prepared via sol-gel spin coating method. Structural, surface morphology and optical properties were investigated with the addition of two different amount of silver (Ag). X-ray diffraction pattern shows the sample with pure TiO2, the only phase presence was brookite TiO2. When the Ag content added into the solution, the phase existed for the samples with TiO2doped 0.5g Ag and TiO2doped 1.0g Ag were anatase TiO2with no peak corresponds to Ag phase. The surface morphology of film was characterized by scanning electron microscopy (SEM). The films were annealed at 450 °C and it shows non-uniform films. The films have a large flaky and cracks film which was attributed to surface tension between the film and the air during the drying process. When the solution of sol was added with Ag content, it shows the porous structure with flaky-crack films. With the increasing of the Ag content from 0.5g to 1.0g, the structure is more porous and it is good for the photocatalytic activity. The UV-Vis spectra shows that the film exhibits a low absorbance which was due to the substrate is inhomogeneously covered by the flaky-crack films.


2022 ◽  
Vol 1048 ◽  
pp. 158-163
Author(s):  
Mekala Lavanya ◽  
Srirangam Sunita Ratnam ◽  
Thota Subba Rao

Ti doped Cu2O thin films were prepared at distinct Argon/Oxygen gas flow ratio of 34/1, 33/2,32/3 and 31/4 with net flow (Ar+O2) of 35 sccm by using DC magnetron sputtering system on glass substrates at room temperature. The gas mixture influence on the film properties studied by using X-ray diffraction, Field emission scanning electron microscopy and UV-Visible spectroscopy. From XRD results, it is evident that, with a decrease in oxygen content, the amplitude of (111) peak increased, peak at a 35.67o scattering angle and the films shows a simple cubic structure. The FESEM images indicated the granularity of thin films was distributed uniformly in a homogenous model and also includes especially pores and cracks. The film deposited at 31/4 showed a 98% higher transmittance in the visible region.


Author(s):  
Aus A. Najim ◽  
Kadhim R. Gbashi ◽  
Ammar T. Salih

In the present work, nanocrystalline hausmannite Mn3O4:Ba thin films have been deposited on glass substrates by chemical spray pyrolysis (CSP). Then, we investigated the impact of Ba doping concentrations on the structural, morphological and optical properties. The structural characteristics were investigated by X-ray diffraction technique and clearly show the films have a spinel Mn3O4 polycrystalline structure, the degree of crystallinity was improved by increasing Ba concentrations in Mn3O4 matrix with crystallite size range of 15–33[Formula: see text]nm. The lattice parameters, the unit cell volume and the (Mn-O) bond length of tetrahedral and octahedral sites, were varied by increasing Ba concentrations. SEM micrographs show that the films are homogeneous with nanoparticles dispersed on the surface with sizes range 30–132[Formula: see text]nm. The optical properties were estimated by UV-Vis-NIR spectrophotometer and exhibited that the optical transmittance and band gap were improved by increasing Ba doping concentration. Empirical equations were suggested to estimate some correlated variables with excellent agreement with the experimental data. The optimum condition was recorded in films doped with 3% of Ba where a better crystallinity, a preferable surface morphology and outstanding optical properties have been achieved.


2010 ◽  
Vol 24 (32) ◽  
pp. 3089-3095 ◽  
Author(s):  
J. Y. HUANG ◽  
G. H. FAN ◽  
T. MEI ◽  
S. W. ZHENG ◽  
Q. L. NIU ◽  
...  

Tantalum-doped indium tin oxide ( Ta -doped ITO) transparent conductive films are deposited on glass substrates by electron-beam evaporation. The effects of different Ta concentrations and annealing temperatures on the structural, morphologic, electrical, and optical properties of Ta -doped ITO films are investigated by X-ray diffraction (XRD), atomic force microscope (AFM), Hall measurement, and optical transmission spectroscopy. The obtained films are polycrystalline with a cubic bixbyite structure of indium oxide and preferentially oriented in the (222) crystallographic direction. The minimum resistivity of 1.54×10-4 Ω ·cm is obtained from the ITO film containing 0.2 wt% tantalum annealed at 500°C and the average optical transmittance is over 95% from 425 nm to 460 nm.


1985 ◽  
Vol 63 (6) ◽  
pp. 712-715 ◽  
Author(s):  
A. Haque ◽  
A. E. Dixon ◽  
D. E. Brodie

The use of electron-beam irradiation combined with a hot-wall technique during deposition of CdS films is described. CdS films 2–10 μm thick were thermally deposited with and without electron bombardment on glass substrates using a hot-wall technique under a pressure greater than 1 × 10−6 Torr (1 Torr = 133.3 Pa). Film properties were studied using low-angle X-ray diffraction, scanning electron microscopy, optical microscopy using a chemical decoration technique, Hall-effect measurements, and temperature-dependent dark conductivity. The surface grain size varied from 2 to 5 μm and films were brownish orange with a smoky appearance.


Sign in / Sign up

Export Citation Format

Share Document