MICROSTRUCTURE AND BLUE PHOTOLUMINESCENCE OF HYDROGENATED SILICON CARBONITRIDE THIN FILMS

2019 ◽  
Vol 26 (04) ◽  
pp. 1850177 ◽  
Author(s):  
YINQIAO PENG ◽  
JICHENG ZHOU ◽  
GUIBIN LEI ◽  
YUANJU GAN ◽  
YUEFENG CHEN

Hydrogenated silicon carbonitride (SiCN:H) thin films were deposited by sputtering of silicon carbide target in hydrogen-doped argon and nitrogen atmospheres. The properties of the SiCN:H films were analyzed by scanning electron microscopy with energy dispersive spectrometer, atomic force microscope, Fourier transform infrared spectroscopy, X-ray diffraction and fluorescence spectrophotometer. No distinct crystal was formed in the SiCN:H films as-deposited and annealed at 600∘C and 800∘C. The SiCN:H films were mainly composed of Si–N, Si–C, Si–O, C–C, C–N, C[Formula: see text]N, N–Hn bonds and SiCxNy network structure. The strong blue photoluminescence observed from the SiCN:H film annealed at 600∘C was attributed to SiCxNy network structure.

2008 ◽  
Vol 8 (4) ◽  
pp. 1757-1761 ◽  
Author(s):  
Ajeet Kaushik ◽  
Jitendra Kumar ◽  
M. K. Tiwari ◽  
R. Khan ◽  
B. D. Malhotra ◽  
...  

Polyaniline (PANI)–ZnO nanocomposite thin film has been successfully fabricated on glass substrates by using vacuum deposition technique. The as-grown PANI–ZnO nanocomposite thin films have been characterized using X-ray diffraction, Scanning Electron Microscopy, Atomic Force Microscopy, UV-visible spectrophotometer and Fourier Transform Infrared (FTIR) spectroscopy, respectively. X-ray diffraction of as-grown film shows the reflection of ZnO nanoparticles along with a broad peak of PANI. The surface morphology of nanocomposite films has been investigated using scanning electron microscopy and atomic force microscopy. The hypsochromic shift of the UV absorption band corresponding to π–π* transition in polymeric chain of PANI and a band at 504 cm –1 due to ZnO nanoparticles has been observed in the FTIR spectra. The hydrogen bonding between the imine group of PANI and ZnO nanoparticle has been confirmed from the presence of the absorbance band at 1151 cm–1 in the FTIR spectra of the nanocomposite thin films.


2011 ◽  
Vol 25 (16) ◽  
pp. 2149-2156
Author(s):  
JICHENG ZHOU ◽  
XUQIANG ZHENG ◽  
ZHIJIE SHI ◽  
BAOXING ZHAO ◽  
FU LIU ◽  
...  

SiCO thin-films doped with aluminum (Al) prepared by alternate deposition of SiC and Al thin layers using Ar and O 2 as sputtering gas were deposited on n- Si substrates. The as-deposited thin-films were annealed under 600°C in nitrogen ambient. The thin-films have been characterized by atomic force microscopy, energy dispersive spectrometer, X-ray diffraction, fourier transform infrared spectroscopy, and photoluminescence spectra. The results showed that the introduction of Al promotes the formation of Si — C bonds, but hinders amorphous SiC to further transform to crystalline SiC . The doped Al would react with SiO x in the thin-films to form more Si particles which strongly affect the optical properties. After Al doped, there presented a seven times of enhancement emission band centered around 412 nm, which is ascribed to nanostructure Si -related defect centers embedded in the SiCO thin-films. The obtained results are expected to have important applications in modern optoelectronic devices.


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 533 ◽  
Author(s):  
Xin Zhang ◽  
Guanghui Li ◽  
Jinxiang You ◽  
Jian Wang ◽  
Jun Luo ◽  
...  

Ludwigite ore is a typical low-grade boron ore accounting for 58.5% boron resource of China, which is mainly composed of magnetite, lizardite and szaibelyite. During soda-ash roasting of ludwigite ore, the presence of lizardite hinders the selective activation of boron. In this work, lizardite and szaibelyite were prepared and their soda-ash roasting behaviors were investigated using thermogravimetric-differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope and energy dispersive spectrometer (SEM-EDS) analyses, in order to shed light on the soda-ash activation of boron within ludwigite ore. Thermodynamics of Na2CO3-MgSiO3-Mg2SiO4-Mg2B2O5 via FactSage show that the formation of Na2MgSiO4 was preferential for the reaction between Na2CO3 and MgSiO3/Mg2SiO4. While, regarding the reaction between Na2CO3 and Mg2B2O5, the formation of NaBO2 was foremost. Raising temperature was beneficial for the soda-ash roasting of lizardite and szaibelyite. At a temperature lower than the melting of sodium carbonate (851 °C), the soda-ash roasting of szaibelyite was faster than that of lizardite. Moreover, the melting of sodium carbonate accelerated the reaction between lizardite with sodium carbonate.


1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


2012 ◽  
Vol 90 (1) ◽  
pp. 39-43 ◽  
Author(s):  
X. Xiang ◽  
D. Chang ◽  
Y. Jiang ◽  
C.M. Liu ◽  
X.T. Zu

Anatase TiO2 thin films are deposited on K9 glass samples at different substrate temperatures by radio frequency magnetron sputtering. N ion implantation is performed in the as-deposited TiO2 thin films at ion fluences of 5 × 1016, 1 × 1017, and 5 × 1017 ions/cm2. X-ray diffraction, atomic force microscope, X-ray photoelectron spectroscopy (XPS), and UV–visible spectrophotometer are used to characterize the films. With increasing N ion fluences, the absorption edges of anatase TiO2 films shift to longer wavelengths and the absorbance increases in the visible light region. XPS results show that the red shift of TiO2 films is due to the formation of N–Ti–O compounds. As a result, photoactivity is enhanced with increasing N ion fluence.


2005 ◽  
Vol 106 ◽  
pp. 117-122 ◽  
Author(s):  
Izabela Szafraniak ◽  
Dietrich Hesse ◽  
Marin Alexe

Self-patterning presents an appealing alternative to lithography for the production of arrays of nanoscale ferroelectric capacitors for use in high density non-volatile memory devices. Recently a self-patterning method, based on the use of the instability of ultrathin films during hightemperature treatments, was used to fabricate nanosized ferroelectrics. This paper reports the use of the method for the preparation of PZT nanoislands on different single crystalline substrates - SrTiO3, MgO and LaAlO3. Moreover, a multi-step deposition procedure in order to control lateral the dimension of the crystals was introduced. The nanostructures obtained were studied by atomic force microscopy, scanning electron microscopy and X-ray diffraction.


Cerâmica ◽  
2002 ◽  
Vol 48 (305) ◽  
pp. 38-42 ◽  
Author(s):  
M. I. B. Bernardi ◽  
E. J. H. Lee ◽  
P. N. Lisboa-Filho ◽  
E. R. Leite ◽  
E. Longo ◽  
...  

The synthesis of TiO2 thin films was carried out by the Organometallic Chemical Vapor Deposition (MOCVD) method. The influence of deposition parameters used during growth on the final structural characteristics was studied. A combination of the following experimental parameters was studied: temperature of the organometallic bath, deposition time, and temperature and substrate type. The high influence of those parameters on the final thin film microstructure was analyzed by scanning electron microscopy with electron dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction.


Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 118 ◽  
Author(s):  
Ho-Yun Lee ◽  
Chi-Wei He ◽  
Ying-Chieh Lee ◽  
Da-Chuan Wu

Cu–Mn–Dy resistive thin films were prepared on glass and Al2O3 substrates, which wasachieved by co-sputtering the Cu–Mn alloy and dysprosium targets. The effects of the addition ofdysprosium on the electrical properties and microstructures of annealed Cu–Mn alloy films wereinvestigated. The composition, microstructural and phase evolution of Cu–Mn–Dy films werecharacterized using field emission scanning electron microscopy, transmission electronmicroscopy and X-ray diffraction. All Cu–Mn–Dy films showed an amorphous structure when theannealing temperature was set at 300 °C. After the annealing temperature was increased to 350 °C,the MnO and Cu phases had a significant presence in the Cu–Mn films. However, no MnO phaseswere observed in Cu–Mn–Dy films at 350 °C. Even Cu–Mn–Dy films annealed at 450 °C showedno MnO phases. This is because Dy addition can suppress MnO formation. Cu–Mn alloy filmswith 40% dysprosium addition that were annealed at 300 °C exhibited a higher resistivity of ∼2100 μΩ·cm with a temperature coefficient of resistance of –85 ppm/°C.


2012 ◽  
Vol 730-732 ◽  
pp. 257-262
Author(s):  
Bruno Nunes ◽  
Sergio Magalhães ◽  
Nuno Franco ◽  
Eduardo Alves ◽  
Ana Paula Serro ◽  
...  

Aiming to improve the nanotribological response of Si-based materials we implanted silicon wafers with different fluences of iron ions (up to 2x1017 cm-2). Implantation was followed by annealing treatments at temperatures from 550°C to 1000°C. The implanted surfaces were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM) and wettability tests. Then, samples were submitted to AFM-based nanowear tests. We observe an increase of both hidrophobicity and and wear resistance of the implanted silicon, indicating that ion implantation of Si can be a route to be deeper explored in what concerns tribomechanical improvement of Si.


2021 ◽  
Vol 1039 ◽  
pp. 398-405
Author(s):  
Munira M.J. Al-Haji ◽  
Raad M.S. Al-Haddad

Bulk Germanium monosulphide (GeS) alloy was synthesized using the usual melt-quenching technique. Its grains were used as the source material to deposit thin films by vacuum thermal evaporation. Thin-films samples were doped with 1, 2, and 3 at.% indium by thermal co-evaporation and annealed in a vacuum at temperatures 373, 473 and 550 K for an hour. Compositional, structural, and morphological properties of the bulk GeS alloy and its thin films were investigated by Energy Dispersive X-Ray Spectroscopy (EDS), X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) techniques. The analyses verified the stoichiometry (GeS) of the starting material in the prepared thin films. They also revealed that the thin films under study are amorphous, homogeneous, without any cracks deposited uniformly on the glass substrate with thickness 650 to 700 nm.


Sign in / Sign up

Export Citation Format

Share Document