INFLUENCE OF ZrB2 ADDITION ON MICROSTRUCTURAL DEVELOPMENT AND MICROHARDNESS OF Ti-SiC CLAD COATINGS ON Ti6Al4V SUBSTRATE

2018 ◽  
Vol 25 (06) ◽  
pp. 1950005 ◽  
Author(s):  
G. A. FAROTADE ◽  
A. P. I. POPOOLA ◽  
S. L. PITYANA

The microstructural features and microhardness of ZrB2-reinforced Ti-SiC coatings on Ti-6Al-4V substrate were studied. The deposition of these coatings was achieved via laser cladding technique. A 4.0[Formula: see text]kW fiber-delivered Nd: YAG laser was used to deposit the coatings on the titanium substrate at a laser power of 700[Formula: see text]W and a laser scan speed of 0.8[Formula: see text]m/min. An initial Ti-SiC coating was deposited with no ZrB2 addition followed by deposition of two other coatings with the incorporation of ZrB2 powder at 5 and 10[Formula: see text]wt.%. The coatings were examined using scanning electron microscope (SEM) coupled with energy dispersive spectroscopy. SEM images of Ti-SiC-ZrB2 coatings revealed good metallurgical bond between the coatings and the substrate and also a significant increment in dendritic formation and inter-dendritic eutectics during solidification within the [Formula: see text]-Ti matrix, exhibiting the presence of newly formed phases as the weight percentage of ZrB2 increased. Back-scattered electron images also showed the dissolution effect of SiC particles, as the particle–matrix bond strength is influenced by ZrB2 addition. Furthermore, the microhardness of the Ti-SiC coating was enhanced with increasing ZrB2 weight percentage. X-ray diffraction analysis revealed dominant compounds formed during laser material processing. This study deepens the knowledge of possible microstructural features associated with Ti-SiC-ZrB2 cermet coatings.

2021 ◽  
Vol 12 (4) ◽  
pp. 2523-2529
Author(s):  
Daniel Sam N ◽  
Anish C I ◽  
Sabeena G ◽  
Rajaduraipandian S ◽  
Manobala ◽  
...  

Sol gel methods were used for the study of the antimicrobial activity of Cd-TiO2 against gram-negative and positive bacteria. These Cd-TiO2 have been characterized by various optical and techniques. They have been exhibited by X-ray diffraction, scanning electron microscopy, ultraviolet spectroscopy, and infrared spectroscopy. The structures of the various XRD patterns indicate that the product has a structure. The particle size of Cd-TiO2 is 35nm. The SEM images confirm the spherical appearance of the sample. The energy X-ray spectra have been confirmed as well and then C, O, Ti, Cd, Pt element are present in Cd-TiO2. The weight percentage of Cadmium is 5.8%, Ti is 51.03%, C is 5.13% and O is 31.75% in Cd-TiO2. BET image shows that the major pore size distribution of Cd-TiO2 is ranged from 2.24 nm. The Cd-TiO2 that the antibacterial activity when tested against the pathogens only gram-negative bacteria such as Pseudomonas. The zone of minimum inhibition concentration was measured in a range of 20mm in 25μl and 30mm in 100μl.


2014 ◽  
Vol 591 ◽  
pp. 43-46
Author(s):  
M. Selvakumar ◽  
G.P. Rajamani ◽  
K. Kalaiselvan

The present work focuses on the fabrication of aluminum (6061-T6) matrix composites (AMCs) reinforced with various weight percentages of SiC particulates using sand casting method. The addition of Mg in the melt during the process has improved the wettability between Al and SiC there by reduced the formation of SiO2 layer on the surface. The fabricated AMCs were characterized using optical microscopy (OM), scanning electron microscopy (SEM), hardness tester and universal tensile testing machine. The OM and SEM images revealed the presence of homogeneous dispersion of SiC particle in the matrix. Using X-ray diffraction (XRD) test, the dispersion of reinforcement has been identified. With the increases in weight percentage of SiC particles in the aluminum matrix improved the mechanical properties of composites.


2012 ◽  
Vol 186 ◽  
pp. 135-138 ◽  
Author(s):  
Włodzimierz Bogdanowicz ◽  
Robert Albrecht ◽  
Jan Sieniawski ◽  
Krzysztof Kubiak ◽  
Arkadiusz Onyszko

In the work the single-crystalline alloy CMSX-4 was studied. The main aim of the study was an attempt to find correlations between images of X-Ray topography, X-ray diffraction maps of lattice parameter and misorientation angle and Scanning Electron Microscopy (SEM) images obtained by back-scattered electron (BSE) technique. Topography images were obtained by Auleytner method with wide beam. Diffractometer provided by EFG company was used for obtaining orientation and lattice parameter maps. Material for research was produced in Research and Development Laboratory for Aerospace Materials of Rzeszów University of Technology. Casts were obtained in ALD furnace by the Bridgman technique. It was found that X-ray topograms were correlated with SEM images of microstructures as well as with orientation and lattice parameter maps. X-Ray topograms showed high contrast bands which corresponded to dendrite arms. There was a correlation between low angle boundary and lattice parameter map.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1238
Author(s):  
Garven M. Huntley ◽  
Rudy L. Luck ◽  
Michael E. Mullins ◽  
Nick K. Newberry

Four naturally occurring zeolites were examined to verify their assignments as chabazites AZLB-Ca and AZLB-Na (Bowie, Arizona) and clinoptilolites NM-Ca (Winston, New Mexico) and NV-Na (Ash Meadows, Nevada). Based on powder X-ray diffraction, NM-Ca was discovered to be mostly quartz with some clinoptilolite residues. Treatment with concentrated HCl (12.1 M) acid resulted in AZLB-Ca and AZLB-Na, the chabazite-like species, becoming amorphous, as confirmed by powder X-ray diffraction. In contrast, NM-Ca and NV-Na, which are clinoptilolite-like species, withstood boiling in concentrated HCl acid. This treatment removes calcium, magnesium, sodium, potassium, aluminum, and iron atoms or ions from the framework while leaving the silicon framework intact as confirmed via X-ray fluorescence and diffraction. SEM images on calcined and HCl treated NV-Na were obtained. BET surface area analysis confirmed an increase in surface area for the two zeolites after treatment, NM-Ca 20.0(1) to 111(4) m2/g and NV-Na 19.0(4) to 158(7) m2/g. 29Si and 27Al MAS NMR were performed on the natural and treated NV-Na zeolite, and the data for the natural NV-Na zeolite suggested a Si:Al ratio of 4.33 similar to that determined by X-Ray fluorescence of 4.55. Removal of lead ions from solution decreased from the native NM-Ca, 0.27(14), NV-Na, 1.50(17) meq/g compared to the modified zeolites, 30 min HCl treated NM-Ca 0.06(9) and NV-Na, 0.41(23) meq/g, and also decreased upon K+ ion pretreatment in the HCl modified zeolites.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 931
Author(s):  
Ioana-Codruţa Mirică ◽  
Gabriel Furtos ◽  
Ondine Lucaciu ◽  
Petru Pascuta ◽  
Mihaela Vlassa ◽  
...  

The aim of this research was to develop new electrospun membranes (EMs) based on polycaprolactone (PCL) with or without metronidazole (MET)/nano-hydroxyapatite (nHAP) content. New nHAP with a mean diameter of 34 nm in length was synthesized. X-ray diffraction (XRD) and attenuated total reflectance Fourier transform infrared spectroscopy (FTIR-ATR) were used for structural characterization of precursors and EMs. The highest mechanical properties (the force at maximum load, Young’s modulus and tensile strength) were found for the PCL membranes, and these properties decreased for the other samples in the following order: 95% PCL + 5% nHAP > 80% PCL + 20% MET > 75% PCL + 5% nHAP + 20% MET. The stiffness increased with the addition of 5 wt.% nHAP. The SEM images of EMs showed randomly oriented bead-free fibers that generated a porous structure with interconnected macropores. The fiber diameter showed values between 2 and 16 µm. The fiber diameter increased with the addition of nHAP filler and decreased when MET was added. New EMs with nHAP and MET could be promising materials for guided bone regeneration or tissue engineering.


2017 ◽  
Vol 727 ◽  
pp. 327-334
Author(s):  
Yan Wang ◽  
Jun Wang ◽  
Xiao Fei Zhang ◽  
Ya Qing Liu

La-Nd co-doped barium hexaferrites, Ba0.7(LamNdn)0.3Fe12O19 (D-BaM), were successfully prepared by sol-gel method. PANI / D-BaM composites were synthesized by in-situ polymerization in solution. The structure, morphology and properties of samples have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), four-probe conductivity tester and vector network analyzer. The XRD patterns showed that the crystal structure of all the samples exist as M-type phases. The SEM images revealed that the particles presented a hexagonal platelet-like morphology. The magnetic properties could be improved by substitutions of La and Nd ions. The saturation magnetization (Ms) and coercive force (Hc) increased with the change of La / Nd ratio to the maximum at La / Nd = 3:1. The doped particles have also been embedded in conductive PANI to prepare electromagnetic materials, and the conductivity kept on the order of 10-2. The microwave absorbing properties of composites at 30 MHz-6 GHz improved obviously, the peak value of reflection loss could reach-7.5 dB.


Author(s):  
E. López-Honorato ◽  
P. J. Meadows ◽  
J. Tan ◽  
Y. Xiang ◽  
P. Xiao

In this work we have deposited silicon carbide (SiC) at 1300°C with the addition of small amounts of propylene. The use of propylene and high concentrations of methyltrichlorosilane (9 vol %) allowed the deposition of superhard SiC coatings (42 GPa). The superhard SiC could result from the presence of a SiC–C solid solution, undetectable by X-ray diffraction but visible by Raman spectroscopy. Another sample obtained by the use of 50 vol % Argon, also showed the formation of SiC with good properties. The use of a flat substrate together with the particles showed the importance of carrying out the analysis on actual particles rather than in flat substrates. We show that it is possible to characterize the anisotropy of pyrolytic carbon by Raman spectroscopy.


2018 ◽  
Vol 25 (08) ◽  
pp. 1950025
Author(s):  
RAFIK MAIZI ◽  
ATHMANE MEDDOUR ◽  
CÉLINE ROUSSE

The deposition of Ni–Fe thin layers in boric acid and ionic liquid ([BuMePyr][Tf2N]) baths were successfully prepared. The obtained materials have been characterized by X-ray diffraction (XRD), Energy Dispersive X-ray spectroscopy (EDX) and SEM. Meanwhile, these materials were carried out by chronoamperometry or chronopotentiometry by varying the intensity of the current and the deposition potential. The results indicate that the coatings of Ni–Fe alloys were successfully obtained by electroplating on the copper substrates, and the alloys composition shows irregular behavior with polarization. The nickel content in the samples is in the range of 55–90%, but the iron content ranges from 10–30%, when potential deposits were varied from [Formula: see text]2[Formula: see text]V to [Formula: see text]4[Formula: see text]V vs Ni electrode. The results also showed that the thin layers are monophased; they contain the Ni3Fe phase. Further, SEM images of Ni–Fe alloys show the different shapes of particles.


2012 ◽  
Vol 627 ◽  
pp. 43-48
Author(s):  
Shu Hua Wang ◽  
Jin Ming Dai ◽  
Hu Sheng Jia ◽  
Bing She Xu

Cellulose fibers were chemically modified on surface by acrylamide polymerization and glutaraldehyde crosslinking. The chemical and morphological structures of modified cellulose fibers were investigated with X-ray diffraction, FTIR spectra, and scanning electron microscopy (SEM). The crystalline conformations of the cellulose fibers were slightly changed in polymerization and crosslinking process. The wet strength of modified cellulose fibers was improved. Appreciable difference between the surfaces of native and modified cellulose fibers was observed from SEM images.


2016 ◽  
Vol 21 (2) ◽  
pp. 146-155 ◽  
Author(s):  
Gladys Perez Medina ◽  
Hugo Lopez Ferreira ◽  
Patricia Zambrano Robledo ◽  
Argelia Miranda Pérez ◽  
Felipe A. Reyes Valdés

Abstract The present work describes the effect of FSW on the result microstructure in the stir zone (SZ), thermo-mechanically affected zone (TMAZ), heat affected zone (HAZ) and base metal (BM) of a TRIP-780 steel. X-ray diffraction (XRD), optical microscopy (OM) and EBSD were used for determinations retained austenite (RA) in the SZ, It was found that the amount of RA developed in SZ was relatively large, (approximately 11% to 15%). In addition, recrystallization and the formation of a grain texture were resolved using EBSD. During FSW, the SZ experienced severe plastic deformation which lead to an increase in the temperature and consequently grain recrystallization. Moreover, it was found that the recrystallized grain structure and relatively high martensite levels developed in the SZ lead to a significant drop in the mechanical properties of the steel. In addition, microhardness profiles of the welded regions indicated that the hardness in both the SZ and TMAZ were relatively elevated confirming the development of martensite in these regions. In particular, to evaluate the mechanical strength of the weld, lap shear tensile test was conducted; exhibited the fracture zone in the SZ with shear fracture with uniformly distributed elongation shear dimples.


Sign in / Sign up

Export Citation Format

Share Document