ASSESSMENT OF PARAMETER UNCERTAINTY IN RIGID MUSCULOSKELETAL SIMULATION USING A PROBABILISTIC APPROACH

2015 ◽  
Vol 18 (03) ◽  
pp. 1550013 ◽  
Author(s):  
Tien Tuan Dao ◽  
Marie-Christine Ho Ba Tho

Experimental investigation coupled with numerical simulations is commonly used for solving multi-physical problems. In the field of biomechanics, in which the aim is to understand the mechanics of living system, the main difficulties are to provide experimental data reflecting the multi-physical behavior of the system of interest. These experimental data are used as input data for numerical simulations to quantify output responses through physical and/or biological laws expressed by constitutive mathematical equations. However, uncertainties on the experimentally available data exist from factors such as human variability and differences in protocols parameters and techniques. Thus, the true values of these data could never be experimentally measured. The objective of this study was to develop a modeling workflow to assess and account for the parameter uncertainty in rigid musculoskeletal simulation. A generic musculoskeletal model was used. Data uncertainties of the right thigh mass, physiological cross-sectional area (pCSA) and muscle tension coefficient of the rectus femoris were accounted to estimate their effect on the joint moment and muscle force computing, respectively. A guideline was developed to fuse data from multiple sources into a sample variation space leading to establish input data distribution. Uncertainty propagation was performed using Monte Carlo and most probable point methods. A high degree of sensitivity of 0.98 was noted for the effect of thigh mass uncertainty on the hip joint moment using inverse dynamics method. A strong deviation of rectus femoris muscle force (around 260 N) was found under effect of pCSA and muscle tension coefficient on the force estimation using static optimization method. Accounting parameter uncertainty into rigid musculoskeletal simulation plays an essential role in the evaluation of the confidence in the model outputs. Thus, simulation outcome may be computed and represented in a more reliable manner with a global range of plausible values.

Author(s):  
Larissa Steiger de Freitas ◽  
Marcus Vinícius Canhoto Alves ◽  
Rafael Rodrigues Francisco

Author(s):  
V. I. Kostylev ◽  
B. Z. Margolin

The main features of shallow cracks fracture are considered, and a brief analysis of methods allowing to predict the temperature dependence of the fracture toughness KJC (T) for specimens with shallow cracks is given. These methods include DA-method, (JQ)-method, (J-T)-method, “local methods” with its multiparameter probabilistic approach, GP method uses power approach, and also two engineering methods – RMSC (Russian Method for Shallow Crack) and EMSC (European Method for Shallow Crack). On the basis of 13 sets of experimental data for national and foreign steels, a detailed verification and comparative analysis of these two engineering methods were carried out on the materials of the VVER and PWR nuclear reactor vessels considering the effect of shallow cracks.


Author(s):  
Fakhreddine Landolsi ◽  
Fathi H. Ghorbel ◽  
James B. Dabney

AFM-based nanomanipulation is very challenging because of the complex mechanics in tip-sample interactions and the limitations in AFM visual sensing capabilities. In the present paper, we investigate the modeling of AFM-based nanomanipulation emphasizing the effects of the relevant interactions at the nanoscale. The major contribution of the present work is the use of a combined DMT-JKR interaction model in order to describe the complete collision process between the AFM tip and the sample. The coupling between the interactions and the friction at the nanoscale is emphasized. The efficacy of the proposed model to reproduce experimental data is demonstrated via numerical simulations.


2021 ◽  
pp. 204141962110377
Author(s):  
Yaniv Vayig ◽  
Zvi Rosenberg

A large number of 3D numerical simulations were performed in order to follow the trajectory changes of rigid CRH3 ogive-nosed projectiles, impacting semi-infinite metallic targets at various obliquities. These trajectory changes are shown to be related to the threshold ricochet angles of the projectile/target pairs. These threshold angles are the impact obliquities where the projectiles end up moving in a path parallel to the target’s face. They were found to depend on a non-dimensional entity which is equal to the ratio between the target’s resistance to penetration and the dynamic pressure exerted by the projectile upon impact. Good agreement was obtained by comparing simulation results for these trajectory changes with experimental data from several published works. In addition, numerically-based relations were derived for the penetration depths of these ogive-nosed projectiles at oblique impacts, which are shown to agree with the simulation results.


Author(s):  
Stephanie Follett ◽  
Amer Hameed ◽  
S. Darina ◽  
John G. Hetherington

In order to validate the numerical procedure, the explosion of a mine was recreated within the non-linear dynamics software, AUTODYN. Two models were created and analysed for the purposes of this study — buried and flush HE charge in sand. The explosion parameters — time of arrival, maximum overpressure and specific impulse were recorded at two stand-off distances above the ground surface. These parameters are then compared with LS-DYNA models and published experimental data. The results, presented in table format, are in reasonable agreement.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Andrea Rapisarda ◽  
Alessio Desando ◽  
Elena Campagnoli ◽  
Roberto Taurino

The design of modern aircrafts propulsion systems is strongly influenced by the important objective of environmental impact reduction. Through a great number of researches carried out in the last decades, significant improvements have been obtained in terms of lower fuel consumption and pollutant emission. Experimental tests are a necessary step to achieve new solutions that are more efficient than the current designs, even if during the preliminary design phase, a valid alternative to expensive experimental tests is the implementation of numerical models. The processing power of modern computers allows indeed the simulation of more complex and detailed phenomena than the past years. The present work focuses on the implementation of a numerical model for rotating stepped labyrinth seals installed in low-pressure turbines. These components are widely employed in sealing turbomachinery to reduce the leakage flow between rotating components. The numerical simulations were performed by using computational fluid dynamics (CFD) methodology, focusing on the leakage performances at different rotating speeds and inlet preswirl ratios. Investigations on velocity profiles into seal cavities were also carried out. To begin with, a smooth labyrinth seal model was validated by using the experimental data found in the literature. The numerical simulations were extended to the honeycomb labyrinth seals, with the validation performed on the velocity profiles. Then, the effects of two geometrical parameters, the rounded fin tip leading edge, and the step position were numerically investigated for both smooth and honeycomb labyrinth seals. The obtained results are generally in good agreement with the experimental data. The main effect found when the fin tip leading edge was rounded was a large increase in leakage flow, while the step position contribution to the flow path behavior is nonmonotone.


2016 ◽  
Vol 66 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Michal Šofer ◽  
Rostislav Fajkoš ◽  
Radim Halama

AbstractThe main aim of the presented paper is to show how heat treatment, in our case the induction hardening, will affect the wear rates as well as the ratcheting evolution process beneath the contact surface in the field of line rolling contact. Used wear model is based on shear band cracking mechanism [1] and non-linear kinematic and isotropic hardening rule of Chaboche and Lemaitre. The entire numerical simulations have been realized in the C# programming language. Results from numerical simulations are subsequently compared with experimental data.


2018 ◽  
Vol 22 (11) ◽  
pp. 5947-5965 ◽  
Author(s):  
Linh Hoang ◽  
Rajith Mukundan ◽  
Karen E. B. Moore ◽  
Emmet M. Owens ◽  
Tammo S. Steenhuis

Abstract. Uncertainty in hydrological modeling is of significant concern due to its effects on prediction and subsequent application in watershed management. Similar to other distributed hydrological models, model uncertainty is an issue in applying the Soil and Water Assessment Tool (SWAT). Previous research has shown how SWAT predictions are affected by uncertainty in parameter estimation and input data resolution. Nevertheless, little information is available on how parameter uncertainty and output uncertainty are affected by input data of varying complexity. In this study, SWAT-Hillslope (SWAT-HS), a modified version of SWAT capable of predicting saturation-excess runoff, was applied to assess the effects of input data with varying degrees of complexity on parameter uncertainty and output uncertainty. Four digital elevation model (DEM) resolutions (1, 3, 10 and 30 m) were tested for their ability to predict streamflow and saturated areas. In a second analysis, three soil maps and three land use maps were used to build nine SWAT-HS setups from simple to complex (fewer to more soil types/land use classes), which were then compared to study the effect of input data complexity on model prediction/output uncertainty. The case study was the Town Brook watershed in the upper reaches of the West Branch Delaware River in the Catskill region, New York, USA. Results show that DEM resolution did not impact parameter uncertainty or affect the simulation of streamflow at the watershed outlet but significantly affected the spatial pattern of saturated areas, with 10m being the most appropriate grid size to use for our application. The comparison of nine model setups revealed that input data complexity did not affect parameter uncertainty. Model setups using intermediate soil/land use specifications were slightly better than the ones using simple information, while the most complex setup did not show any improvement from the intermediate ones. We conclude that improving input resolution and complexity may not necessarily improve model performance or reduce parameter and output uncertainty, but using multiple temporal and spatial observations can aid in finding the appropriate parameter sets and in reducing prediction/output uncertainty.


2018 ◽  
Vol 12 (1) ◽  
pp. 114-127 ◽  
Author(s):  
L. Cantone ◽  
A. Ottati

Introduction: The paper describes the automatic procedure, implemented in UIC software TrainDy, for the simulation of friction coefficient of new LL shoes, used to avoid noise from freight traffic. Method: This procedure uses certified experimental data obtained at dynamometer bench as input data and computes a series of polynomials laws that describe the evolution of friction coefficient with speed, for different values of normal force between brake blocks and wheel and for different initial braking speeds. Result: Numerical results are compared against two series of experimental slip tests, carried on Trenitalia freight wagons, in terms of both stopping distances (for different starting speeds and loading conditions) and pressure in brake cylinder, speed and acceleration. Errors in terms of stopping distance are always below 5% whereas errors in terms of maximum acceleration are up to 20%.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 626
Author(s):  
Ireneusz Marzec ◽  
Jerzy Bobiński

Results of the numerical simulations of the size effect phenomenon for concrete in comparison with experimental data are presented. In-plane geometrically similar notched and unnotched beams under three-point bending are analyzed. EXtended Finite Element Method (XFEM) with a cohesive softening law is used. Comprehensive parametric study with the respect to the tensile strength and the initial fracture energy is performed. Sensitivity of the results with respect to the material parameters and the specimen geometry is investigated. Three different softening laws are examined. First, a bilinear softening definition is utilized. Then, an exponential curve is taken. Finally, a rational Bezier curve is tested. An ambiguity in choosing material parameters and softening curve definitions is discussed. Numerical results are compared with experimental outcomes recently reported in the literature. Two error measures are defined and used to quantitatively assess calculated maximum forces (nominal strengths) in comparison with experimental values as a primary criterion. In addition, the force—displacement curves are also analyzed. It is shown that all softening curves produce results consistent with the experimental data. Moreover, with different softening laws assumed, different initial fracture energies should be taken to obtain proper results.


Sign in / Sign up

Export Citation Format

Share Document