Dynamic Analysis of Planar Multibody Systems Considering Contact Characteristics of Ball Bearing Joint

Author(s):  
Yu Chen ◽  
Kailei Liu ◽  
Rui Qiu ◽  
Chengtao Yu ◽  
Xianfei Xia ◽  
...  

A comparative study of dynamic analysis for planar multibody systems with ball bearing joints is conducted in this study. The transmission mechanism is used as the exemplar case for illustrating the effect of ball bearing joints on the dynamic behavior of multibody systems. To reflect the energy loss, the models of continuous contact force and modified Coulomb’s friction are considered in the kinematic equations for the multibody system with ball bearing joint. With this, the dynamic characteristics of the mechanism are studied. Meanwhile, an experimental platform is built to generate the test data for demonstrating the effectiveness and correctness of the proposed method. Moreover, the effects of driving speed and clearance size on the dynamic behavior of the multibody system are investigated. The numerical results indicate that the dynamic behavior of the mechanical system is sensitive to the variation of the design parameters and the selection of parameters can affect greatly the accuracy of the mechanism with clearance joints.

Author(s):  
Chin-Tzung Chang ◽  
Ali A. Seireg

Abstract This study deals with the design and dynamic analysis of a ramp-roller clutch which can be utilized in developing a mechanical function generator. The dynamic behavior with non-linear torsional spring and damping characteristics is first investigated. Three major design parameters are identified and further optimized for the objective of minimizing the settling time. As a result of underdamping, undesired vibration can occur during the engagement. In order to minimize these unwanted vibrations, coulomb dampers are considered. By adding a properly tuned auxiliary damper, the settling time can be significantly reduced. An example is also given to illustrate the use of one-directional clutches for mechanical function generation where an arbitrary function is synthesized by sequentially triggering 7 clutches. Phase shifting is incorporated in the to reduce the error in the generated function.


Author(s):  
Seyed Ali Modarres Najafabadi ◽  
Jo´zsef Ko¨vecses ◽  
Jorge Angeles

This paper presents detailed discussions and a potential grouping of various approaches to the dynamic analysis of the transition phase in multibody contacts. The methods considered are able to address the general case of multiple-point contact. The main grouping principle relies on the fundamental unilateral nature of the contact between two bodies in a multibody system. Based on this, three main classes of modeling techniques are considered.


Author(s):  
Henry Arenbeck ◽  
Samy Missoum ◽  
Anirban Basudhar ◽  
Parviz E. Nikravesh

This paper introduces a new methodology for probabilistic optimal design of multibody systems. Specifically, the effects of dimensional uncertainties on the behavior of a system are considered. The proposed reliability-based optimization method addresses difficulties such as high computational effort and non-smoothness of the system’s responses, for example, as a result of contact events. The approach is based on decomposition of the design space into regions, corresponding to either acceptable or non-acceptable system performance. The boundaries of these regions are defined using Support Vector Machines (SVMs), which are explicit in terms of the design parameters. A SVM can be trained based on a limited number of samples, obtained from a design of experiments, and allows a very efficient estimation of probability of failure, even when Monte Carlo Simulation (MCS) is used. A modularly structured tolerance analysis scheme for automatic estimation of system production cost and probability of system failure is presented. In this scheme, detection of failure is based on multibody system simulation, yielding high computational demand. A SVM-based replication of the failure detection process is derived, which ultimately allows for automatic optimization of tolerance assignments. A simple multibody system, whose performance usually shows high tolerance sensitivity, is chosen as an exemplary system for illustration of the proposed approach. The system is optimally designed for minimum manufacturing cost while satisfying a target performance level with a given probability.


2020 ◽  
Vol 21 (6) ◽  
pp. 619
Author(s):  
Kostandin Gjika ◽  
Antoine Costeux ◽  
Gerry LaRue ◽  
John Wilson

Today's modern internal combustion engines are increasingly focused on downsizing, high fuel efficiency and low emissions, which requires appropriate design and technology of turbocharger bearing systems. Automotive turbochargers operate faster and with strong engine excitation; vibration management is becoming a challenge and manufacturers are increasingly focusing on the design of low vibration and high-performance balancing technology. This paper discusses the synchronous vibration management of the ball bearing cartridge turbocharger on high-speed balancer and it is a continuation of papers [1–3]. In a first step, the synchronous rotordynamics behavior is identified. A prediction code is developed to calculate the static and dynamic performance of “ball bearing cartridge-squeeze film damper”. The dynamic behavior of balls is modeled by a spring with stiffness calculated from Tedric Harris formulas and the damping is considered null. The squeeze film damper model is derived from the Osborne Reynolds equation for incompressible and synchronous fluid loading; the stiffness and damping coefficients are calculated assuming that the bearing is infinitely short, and the oil film pressure is modeled as a cavitated π film model. The stiffness and damping coefficients are integrated on a rotordynamics code and the bearing loads are calculated by converging with the bearing eccentricity ratio. In a second step, a finite element structural dynamics model is built for the system “turbocharger housing-high speed balancer fixture” and validated by experimental frequency response functions. In the last step, the rotating dynamic bearing loads on the squeeze film damper are coupled with transfer functions and the vibration on the housings is predicted. The vibration response under single and multi-plane unbalances correlates very well with test data from turbocharger unbalance masters. The prediction model allows a thorough understanding of ball bearing turbocharger vibration on a high speed balancer, thus optimizing the dynamic behavior of the “turbocharger-high speed balancer” structural system for better rotordynamics performance identification and selection of the appropriate balancing process at the development stage of the turbocharger.


2016 ◽  
Vol 22 (2(99)) ◽  
pp. 48-51
Author(s):  
D.S. Kalynychenko ◽  
◽  
Ye.Yu. Baranov ◽  
M.V. Poluian ◽  
◽  
...  

2020 ◽  
Vol 68 (1) ◽  
pp. 48-58
Author(s):  
Chao Liu ◽  
Zongde Fang ◽  
Fang Guo ◽  
Long Xiang ◽  
Yabin Guan ◽  
...  

Presented in this study is investigation of dynamic behavior of a helical gear reduction by experimental and numerical methods. A closed-loop test rig is designed to measure vibrations of the example system, and the basic principle as well as relevant signal processing method is introduced. A hybrid user-defined element model is established to predict relative vibration acceleration at the gear mesh in a direction normal to contact surfaces. The other two numerical models are also constructed by lumped mass method and contact FEM to compare with the previous model in terms of dynamic responses of the system. First, the experiment data demonstrate that the loaded transmission error calculated by LTCA method is generally acceptable and that the assumption ignoring the tooth backlash is valid under the conditions of large loads. Second, under the common operating conditions, the system vibrations obtained by the experimental and numerical methods primarily occur at the first fourth-order meshing frequencies and that the maximum vibration amplitude, for each method, appears on the fourth-order meshing frequency. Moreover, root-mean-square (RMS) value of the acceleration increases with the increasing loads. Finally, according to the comparison of the simulation results, the variation tendencies of the RMS value along with input rotational speed agree well and that the frequencies where the resonances occur keep coincident generally. With summaries of merit and demerit, application of each numerical method is suggested for dynamic analysis of cylindrical gear system, which aids designers for desirable dynamic behavior of the system and better solutions to engineering problems.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1105
Author(s):  
Jianhua Zhao ◽  
Lanchun Xing ◽  
Sheng Li ◽  
Weidong Yan ◽  
Dianrong Gao ◽  
...  

The magnetic-liquid double suspension bearing (MLDSB) is a new type of suspension bearing, with electromagnetic suspension as the main part and hydrostatic supports as the auxiliary part. It can greatly improve the bearing capacity and stiffness of rotor-bearing systems and is suitable for a medium speed, heavy load, and frequent starting occasions. Compared with the active electromagnetic bearing system, the traditional protective bearing device is replaced by the hydrostatic system in MLDSB, and the impact-rubbing phenomenon can be restrained and buffered. Thus, the probability and degree of friction and wear between the rotor and the magnetic pole are reduced drastically when the electromagnetic system fails. In order to explore the difference in the dynamic behavior law of the impact-rubbing phenomenon between the traditional protection device and hydrostatic system, the dynamic equations of the rotor impact-rubbing in three kinds of protection devices (fixed ring/deep groove ball bearing/hydrostatic system) under electromagnetic failure mode are established, and the axial trajectory and motion law of the rotor are numerically simulated. Finally, the dynamic behavior characteristics of the rotor are compared and analyzed. The results show that: Among the three kinds of protection devices (fixed ring/deep groove ball bearing/hydrostatic system), the hydrostatic system has the least influence on bouncing time, impact-rubbing force, and impact-rubbing degree, and the maximum impact-rubbing force of MLDSB is greatly reduced. Therefore, the protective bear is not required to be installed in the MLDSB. This study provides the basis for the theory of the “gap impact-rubbing” of MLDSB under electromagnetic failure, and helps to identify electromagnetic faults.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Tae-Hoon Lee ◽  
Gun-Ha Yoon ◽  
Seung-Bok Choi

This paper investigates the deploying time (or response time) of an active hood lift system (AHLS) of a passenger vehicle activated by gunpowder actuator. In this work, this is accomplished by changing principal design parameters of the latch part mechanism of the hood system. After briefly introducing the working principle of the AHLS operated by the gunpowder actuator, the governing equations of the AHLS are formulated for each different deploying motion. Subsequently, using the governing equations, the response time for deploying the hold lift system is determined by changing several geometric distances such as the distance from the rotational center of the pop-up guide to the point of the latch in the axial and vertical directions. Then, a comparison is made of the total response time to completely deploy the hood lift system with the existing conventional AHLS and proposed AHLS. In addition, the workable driving speed of the proposed AHLS is compared with the conventional one by changing the powder volume of the actuator.


Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, being the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four bar mechanism is used as an illustrative example and some numerical results are presented, being the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.


Sign in / Sign up

Export Citation Format

Share Document