Synthesis, characterization and VOCs adsorption kinetics of diethylstilbestrol-substituted metallophthalocyanines

2019 ◽  
Vol 23 (01n02) ◽  
pp. 166-174 ◽  
Author(s):  
Esra Kakı ◽  
Nurcan Gögsu ◽  
Ahmet Altındal ◽  
Bekir Salih ◽  
Özer Bekaroğlu

Compound (4,4[Formula: see text] -hex-3-ene-3,4-diyl)bis(4,1-phenylene)bis(oxy)diphthalonitrile 3 was synthesized by the reaction of 4-nitrophthalonitrile 1 and diethylstilbestrol 2 in dry DMF in presence of dry K2CO3. New mononuclear phthalocyanines 4-6 were obtained from compound 3 by addition of the corresponding metal salts [Co(OAc)2 ⋅ 4H2O, Zn(OAc)2 ⋅ 2H2O and Cu(OAc)2]. The novel compounds were characterized by elemental analysis and FT-IR, UV-vis, 1H-NMR and MALDI-TOF mass spectroscopy techniques. The effects of four main groups of organic vapors on these novel compounds were studied and discussed. The adsorption kinetics of alkanes ([Formula: see text]-hexane and [Formula: see text]-octane), alcohols (methanol and 2-proponal), chlorinated hydrocarbons (dichloromethane and trichloromethane) and amines (diethylamine and triethylamine) on 4-6 were examined using three adsorption kinetic models: the Elovich equation, the pseudo-first-order equations and Ritchie’s equation. Results show that the linear regression analysis with respect to the pseudo-second-order rate equations generates a straight line that best fits the data of adsorption of alcohols and chlorinated hydrocarbons on Pc films. On the other hand, the Elovich equation generates a straight line that best fits the data of adsorption of alkanes and amines.

2016 ◽  
Vol 51 (2) ◽  
pp. 95-100
Author(s):  
MN Islam ◽  
N Ahmed ◽  
MY Hossain ◽  
AKML Rahman ◽  
A Sultana

Coconut coir is a low cost bioadsorbent containing large amount of lignin. In this research work sodium chlorite treated coconut coir (SCT CC) was used to remove Cr(VI) from industrial wastewater by implementing adsorption technique through the investigation of the adsorption kinetics at different pH values. The maximum Cr(VI) adsorption capacity of SCT-CC at pH 2.00, 3.00, 5.00 and 7.00 was 24.75, 23.92, 16.07 and 6.31 mg Cr(VI) g-1 SCT-CC respectively with the dose of 7.5 g/L. The equilibrium established within three hours resulting the maximum removal (95%) of chromium. The adsorption kinetics of Cr(VI) on SCT-CC was found to be regulated by pH of the system. Rate of adsorption was the highest at pH 2.00 and the kinetic data well-fitted with Ho's pseudo second order kinetics. Fourier transform infrared (FT-IR) spectrometry analysis indicated that the carbonyl (C=O) groups and hydroxy (O-H) groups from the lignin structure in coconut coir may be involved in the mechanism of Cr(VI) adsorption and it showed good agreement with the kinetic data to elucidate the adsorption mechanismBangladesh J. Sci. Ind. Res. 51(2), 95-100, 2016


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohamed S. Yahia ◽  
Ahmed S. Elzaref ◽  
Magdy B. Awad ◽  
Ahmed M. Tony ◽  
Ahmed S. Elfeky

Abstract Commercial Granulated Active Carbon (GAC) has been modified using 10 Gy dose Gamma irradiation (GAC10 Gy) for increasing its ability of air purification. Both, the raw and treated samples were applied for removing Chlorpyrifos pesticide (CPF) from ambient midair. Physicochemical properties of the two materials were characterized by Fourier Transform Infrared (FT-IR) and Raman spectroscopy. The phase formation and microstructure were monitored using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), supported with Energy-Dispersive X-ray (EDX). The Surface area measurement was detected using BET particle size prosometry. Obtained outcomes showed that, the maximum adsorption capacity, given by Langmuir equations, was greatly increased from 172.712 to 272.480 mg/g for GAC and GAC10 Gy, respectively, with high selectivity. The overall removal efficiency of GAC10 Gy was notably comparable to that of the original GAC-sorbent. The present study indicated that, gamma irradiation could be a promising technique for treating GAC and turned it more active in eliminating the pesticides pollutants from surrounding air. The data of equilibrium has been analyzed by Langmuir and Freundlich models, that were considerably better suited for the investigated materials than other models. The process kinetics of CPF adsorbed onto both tested carbon versions were found to obey the pseudo first order at all concentrations with an exception at 70 mg/l using GAC, where, the spontaneous exothermic adsorption of Chlorpyrifos is a strong function for the pseudo-first order (PFO) and pseudo second order (PSO) kinetics.


2014 ◽  
Vol 809-810 ◽  
pp. 907-911
Author(s):  
Jun Long Wang ◽  
Jie Hou ◽  
Ting Jiang ◽  
Yong Jun He ◽  
Yao Dong Liang

Dry waters with an average diameter of 82 μm were prepared by a high speed mixed route. The formaldehyde absorption kinetics of dry waters was investigated by simulating indoor formaldehyde pollution in glass chamber. The results showed that pseudo-second order model could be used to simulate the adsorption process; the adsorption rate was highest in the initial 60 minutes; when the adsorption lasted for 180 minutes, the adsorption reached equilibrium.


2013 ◽  
Vol 367 ◽  
pp. 45-49
Author(s):  
Ying Hong ◽  
Ze Hui Zhong ◽  
You Shi Liu

Chitosan nanoparticles were prepared by crosslinkingusing TPP. SEM showed that chitosan nanoparticles were successfully obtained.The adsorption characteristics of chitosan nanoparticles were evaluated. Theresults demonstrated that chitosan nanoparticles were suitable for adsorbent toremoval Pb2+. The parameters for the adsorption of Pb2+by chitosan nanoparticles were also determined. It was shown that chitosannanoparticles were fit for Langmuir’s isotherm model and that the adsorptionkinetics of Pb2+ described by the pseudo-second-order model could bebest.


2020 ◽  
Vol 9 (2) ◽  
pp. 108-116
Author(s):  
Tarmizi Taher ◽  
◽  
Nyanyu Ummu Hani ◽  
Neza Rahayu Palapa ◽  
Risfidian Mohadi ◽  
...  

In this work, two synthetic layered double hydroxides (LDH) consists of Zn2+ as M2+ cation with different M3+ cation, i.e., Al3+ and Cr3+ were used as an adsorbent for Congo Red removal aqueous solution. Both Zn-Al and Zn-Cr LDH were characterized by X-ray diffraction, FT-IR, and BET surface area analyzer. The effect of contact time, initial dye concentration, and temperature were evaluated in a batch technique in order to investigate the characteristic of Congo Red adsorption onto both adsorbents. The experimental data were assessed according to the parameter of adsorption kinetics, isotherm, and thermodynamics. The results of LDH characterization showed that Zn-Al LDH has a higher interlayer distance than Zn-Cr LDH, although Zn-Cr LDH has a higher surface area. The FT-IR analysis indicated the interlayer space of both Zn-Cr and Zn-Al LDH was dominated by CO32- as the interlayer anion species. The adsorption kinetics study of Congo Red on both LDH revealed that the adsorption process followed the pseudo-second-order model. For the adsorption isotherm, the experimental data fit well with the Freundlich model rather than the Langmuir model. The thermodynamic study indicated that the adsorption process that occurred on both adsorbents was spontaneous with exothermic nature.


2020 ◽  
Vol 74 (1) ◽  
pp. 65-70
Author(s):  
Bojana Obradovic

Adsorption processes are widely used in different technological areas and industry sectors, thus continuously attracting attention in the scientific research and publications. Design and scale-up of these processes are essentially based on the knowledge and understanding of the adsorption kinetics and mechanism. Adsorption kinetics is usually modeled by using several well-known models including the pseudo-first and pseudo-second order models, the Elovich equation, and the intra-particle diffusion based models. However, in the scientific literature there are a significant number of cases with the inappropriate use of these models, utilization of erroneous expressions, and incorrect interpretation of the obtained results. This paper is especially focused on applications of the pseudo-second order, intra-particle diffusion and the Weber-Morris models, which are illustrated with typical examples. Finally, general recommendations for selection of the appropriate kinetic model and model assumptions, data regression analysis, and evaluation and presentation of the obtained results are outlined.


2020 ◽  
Vol 168 ◽  
pp. 00050
Author(s):  
Vadym Korovin ◽  
Yurii Pohorielov ◽  
Yurii Shestak ◽  
Oleksandr Valiaiev ◽  
Jose Luis Cortina

Kinetics of scandium recovery by TVEX containing tributyl phosphate was studied from the clarified leaching solution of salt chlorinator cake. To assess the contribution of each diffusion phase, experimental data were analyzed using a graphic method. To define the contribution of chemical interaction into the scandium extraction process, recovery kinetics was quantitatively described using pseudo-first order, pseudo-second order kinetic models and Elovich equation in linearized form. It was established that recovery kinetics was most accurately described with the pseudo-second-order model.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2558 ◽  
Author(s):  
Zhansheng Wu ◽  
Xinhui Wei ◽  
Yongtao Xue ◽  
Xiufang He ◽  
Xia Yang

Activated carbons (ACs) based on apricot shells (AS), wood (W), and walnut shells (WS) were applied to adsorb atrazine in co-solutions. To study the effect of Bisphenol A (BPA) on the adsorption behavior of atrazine, the adsorption performance of ACs for BPA in single solution was studied. The results demonstrated that the adsorption kinetics of BPA fitted the pseudo-second-order model, the adsorption isotherms of BPA followed the Langmuir model. Meanwhile, the adsorption kinetics of atrazine fitted the pseudo-second-order kinetics model and the isotherm was consistent with the Freundlich model both in single solution and co-solution. In addition, competitive adsorption was observed when atrazine coexisted with BPA or humic acid. For the adsorption capacity, the adsorption amount of ASAC, WAC, and WSAC for atrazine obviously decreased by 18.0%, 30.0%, and 30.3% in the presence of BPA, respectively, which was due to the π−π interactions, hydrophobic interactions, and H-bonds, resulting in the competitive adsorption between atrazine and BPA. This study contributes to the further understanding of the adsorption behavior for atrazine in co-solution.


Author(s):  
Qingqing Liu ◽  
Xiaoyan Li

The activated MgO was synthesized by microwave homo-precipitator method and characterized by SEM, EDS and FT-IR methods. It was used to adsorption of U(VI) from aqueous solution with batch system. The paper discussed the effect of pH, temperature, contact time, adsorbent dose and initial U(VI) concentration on the adsorption. The results showed that activated MgO has good adsorption capacity for U(VI), the removal rate and equilibrium adsorption capacity reached 83.5% and 84.04mg·g−1 at pH 5.0, 15mg dose and 313K,respectively. The adsorption kinetics of U(VI) onto activated MgO were better fitted with pseudo-second-order kinetic.The adsorption isotherm data were fitted well to Freundlich isotherm model.The thermodynamic parameters showed that the adsorption process is endothermic and spontaneous.


Sign in / Sign up

Export Citation Format

Share Document