A Study on the Compressive Performance of C/SiC Lattice Sandwich Panel at High Temperature

2017 ◽  
Vol 09 (08) ◽  
pp. 1750120 ◽  
Author(s):  
Yanfei Chen ◽  
Shigang Ai ◽  
Rujie He ◽  
Kai Wei ◽  
Daining Fang

In this study, the mechanical properties and failure behaviors of a C/SiC lattice sandwich panel were investigated by numerical simulation approach. On the bases of Hashin’s criteria, a novel failure criterion for 2D C/SiC textile composite was proposed. An UMAT subroutine based on Abaqus code was constructed to demonstrate the fracture mechanism of the C/SiC composite, in which fiber fracture and buckling, matrix failure and the laminate delamination were considered. Out-of-plane compressive experiments of the C/SiC lattice sandwich panels at room temperature were performed to give verifications of the numerical programmer. Based on the simulation method proposed, the mechanical properties and failure features of the C/SiC lattice sandwich panels at high temperatures were studied. It was found that the junction between struts and the panels of the core firstly damaged due to fiber rupture and matrix cracking. Then fiber tensile fracture and matrix cracking occurred in struts sequentially. Finally, delamination took place at junctions and struts and it trigged the collapse of the sandwich structure.

Crystals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Xu Xu ◽  
Zeping Zhang ◽  
Wenjuan Yao

Graphene and graphene oxide (GO) usually have grain boundaries (GBs) in the process of synthesis and preparation. Here, we “attach” GBs into GO, a new molecular configuration i.e., polycrystalline graphene oxide (PGO) is proposed. This paper aims to provide an insight into the stability and mechanical properties of PGO by using the molecular dynamics method. For this purpose, the “bottom-up” multi-structure-spatial design performance of PGO and the physical mechanism associated with the spatial structure in mixed dimensions (combination of sp2 and sp3) were studied. Also, the effect of defect coupling (GBs and functional groups) on the mechanical properties was revealed. Our results demonstrate that the existence of the GBs reduces the mechanical properties of PGO and show an “induction” role during the tensile fracture process. The presence of functional groups converts in-plane sp2 carbon atoms into out-of-plane sp3 hybrid carbons, causing uneven stress distribution. Moreover, the mechanical characteristics of PGO are very sensitive to the oxygen content of functional groups, which decrease with the increase of oxygen content. The weakening degree of epoxy groups is slightly greater than that of hydroxyl groups. Finally, we find that the mechanical properties of PGO will fall to the lowest values due to the defect coupling amplification mechanism when the functional groups are distributed at GBs.


2015 ◽  
Vol 19 (4) ◽  
pp. 456-481 ◽  
Author(s):  
Hamid Reza Tabatabaiefar ◽  
Bita Mansoury ◽  
Mohammad Javad Khadivi Zand ◽  
Daniel Potter

Sandwich panels are made of two materials that are relatively weak in their separated state, but are improved when they are constructed together in a sandwich panel. Sandwich panels can be used for almost any section of a building including roofs, walls and floors. These building components are regularly required to provide insulation properties, weatherproofing properties and durability in addition to providing structural load bearing characteristics. Polystyrene/cement mixed cores and thin cement sheet facings sandwich panels are Australian products made of cement-polystyrene beaded mixture encapsulated between two thick cement board sheets. The structural properties of sandwich panels constructed of polystyrene/cement cores and thin cement sheet facings are relatively unknown. Therefore, in this study, to understand the mechanical behaviour and properties of those sandwich panels, a series of experimental tests have been performed and the outcomes have been explained and discussed. Based on the results of this study, values for modulus of elasticity and ultimate strength of the sandwich panels in dry and saturated conditions have been determined and proposed for practical applications.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3008
Author(s):  
Lei Shang ◽  
Ye Wu ◽  
Yuchao Fang ◽  
Yao Li

For aerospace applications, honeycomb sandwich panels may have small perforations on the cell walls of the honeycomb core to equilibrate the internal core pressure with external gas pressure, which prevent face-sheet/core debonding due to pressure build-up at high temperature. We propose a new form of perforation on the cell walls of honeycomb sandwich panels to reduce the influence of the perforations on the cell walls on the mechanical properties. In this paper, the high temperature mechanical properties of a new vented Ti-6Al-4V honeycomb sandwich panel were investigated. A vented Ti-6AL-4V honeycomb sandwich panel with 35Ti-35Zr-15Cu-15Ni as the filler alloy was manufactured by high-temperature brazing. The element distribution of the brazed joints was examined by means of SEM (scanning electron microscopy) and EDS (energy-dispersive spectroscopy) analyses. Compared to the interaction between the face-sheets and the brazing filler, the diffusion and reaction between the honeycomb core and the brazing filler were stronger. The flatwise compression and flexural mechanical properties of the vented honeycomb sandwich panels were investigated at 20, 160, 300, and 440 °C, respectively. The flatwise compression strength, elastic modulus, and the flexural strength of the vented honeycomb sandwich panels decreased with the increase of temperature. Moreover, the flexural strength of the L-direction sandwich panels was larger than that of the W-direction sandwich panels at the same temperature. More importantly, the vented honeycomb sandwich panels exhibited good compression performance similar to the unvented honeycomb sandwich panels, and the open holes on the cell walls have no negative effect on the compression performance of the honeycomb sandwich panels in these conditions. The damage morphology observed by SEM revealed that the face-sheets and the brazing zone show ductile and brittle fracture behaviors, respectively.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 556-565
Author(s):  
Dongsheng Li ◽  
Mingming Wang ◽  
Xianbin Zhou

Abstract This paper aims to solve two problems of the sandwich panel with aluminum honeycomb: material parameters solution and shape control. The accurate material parameters of the sandwich panels are the basis of shape control. Therefore, a mixed numerical-experimental method is proposed to inversely solve equivalent material parameters of the sandwich panel using genetic algorithm (GA) in the first place. Then a high efficiency FE model based on equivalent material parameters is established to study shape control of the sandwich panels. For shape control, the key issue aims to search optimum position and adjustment volume of control points where actuators are installed. Toward the end, the FE simulation method is deployed to optimize actuator position and adjustment volume one by one. Finally, an active control platform based on multi-point adjustment is developed to verify the practicability of the approach proposed in this paper. Through the experiment of shape control, the root mean square (RMS) of surface deviation of sandwich panel is decreased from 62.7μm to 15.5μm. The results show that the shape control can significantly improve the surface accuracy of the sandwich panels, and the validity of equivalent material parameters is also proved from the side.


2006 ◽  
Vol 37 (2) ◽  
pp. 295-302 ◽  
Author(s):  
Andrea I. Marasco ◽  
Denis D.R. Cartié ◽  
Ivana K. Partridge ◽  
Amir Rezai

2021 ◽  
Vol 2021 (6) ◽  
pp. 5353-5359
Author(s):  
MICHAL SKOVAJSA ◽  
◽  
FRANTISEK SEDLACEK ◽  
MARTIN MRAZEK ◽  
◽  
...  

This paper deal with comparison of mechanical properties of composite sandwich panel with aluminium honeycomb core which is determined by experimental measurement, analytic calculation and numerical simulation. The goal was to compared four composite sandwich panels. The composite sandwich panels were made of two different aluminium honeycomb cores with density 32 and 72 kg.m-3 and two different layup of skin with 4 and 5 layers. The comparison was performed on a three-point bend test with support span 400 mm. This paper confirms the possibility of a very precise design of a composite sandwich panel with an aluminium honeycomb core using analytical calculation and numerical simulation.


2020 ◽  
pp. 109963622094655
Author(s):  
Joel Galos ◽  
Claes Fredriksson ◽  
Raj Das

This paper investigates the mechanical properties of lithium-ion polymer (LiPo) batteries and their subsequent use in the design of multifunctional sandwich panels for automotive applications. Shear properties, flexural properties and compression properties of prismatic pouch LiPo batteries are determined experimentally through a hole-punch test, a three-point bending test and an in-plane compression test, respectively. This study is the first to characterize the shear properties of a lithium-ion battery, which are critical in sandwich panel design. The mechanical properties of the batteries obtained are then applied to existing analytical models of multifunctional sandwich panels consisting of carbon fibre composite facesheets and LiPo battery cores, which are currently being considered for use in automotive panel design. A material selection procedure for a stiffness-limited automotive car door panel subjected to bending shows that a trade-off between mechanical performance and cost can be achieved by using a composite sandwich panel with thin LiPo battery cores or by embedding larger LiPo batteries in lower-density polymer foam cores. The practicality and implementation aspects of using sandwich composites with LiPo battery cores in automotive design are also discussed.


2019 ◽  
Vol 178 ◽  
pp. 107858 ◽  
Author(s):  
Zhong Zhang ◽  
Hongshuai Lei ◽  
Mengchuan Xu ◽  
Jian Hua ◽  
Chuanlei Li ◽  
...  

2019 ◽  
Vol 8 (1) ◽  
pp. 587-599 ◽  
Author(s):  
Hong-mei Zuo ◽  
Dian-sen Li ◽  
David Hui ◽  
Lei Jiang

AbstractInterfacial bonding between the fibers and matrix plays a large role in mechanical properties of composites. In this paper, poly(oxypropylene) diamines (D400) and graphene oxide (GO) nanoparticles were grafted on the desized 3D multi axial warp knitted (MWK) glass fiber (GF) fabrics. The surface morphology and functional groups of modified glass fibers were characterized by scanning electron microscopy (SEM) and fourier transform infrared spectra (FT-IR). Out-of-plane compression properties and the failure mechanisms of composites at different temperature were tested and analyzed. The results revealed that GO nanoparticles were successfully grafted on fibers under the synergistic effect of D400. In addition, D400-GO-grafted composite possessed the highest mechanical properties than desized composite and GO-grafted composite. Their strength and modulus were improved by 10.16%, 10.06%, 8.92%, 8.75%, 7.76% and 40.38%, 32.74%, 29.85%, 26.98%, 25.16% compared to those of desized composites at 30∘C, 60∘C, 90∘C, 120∘C, 150∘C, respectively. The damage to D400-GO-grafted composite was yarns fracture accompanied with fibers breakage, matrix cracking, interface debonding. At higher temperature, interlayer slipping with matrix plasticization was the main failure mode.


2021 ◽  
Vol 2 (2) ◽  
pp. 419-430
Author(s):  
Ankur Bajpai ◽  
James R. Davidson ◽  
Colin Robert

The tensile fracture mechanics and thermo-mechanical properties of mixtures composed of two kinds of epoxy resins of different chemical structures and functional groups were studied. The base resin was a bi-functional epoxy resin based on diglycidyl ether of bisphenol-A (DGEBA) and the other resins were (a) distilled triglycidylether of meta-amino phenol (b) 1, 6–naphthalene di epoxy and (c) fluorene di epoxy. This research shows that a small number of multifunctional epoxy systems, both di- and tri-functional, can significantly increase tensile strength (14%) over neat DGEBA while having no negative impact on other mechanical properties including glass transition temperature and elastic modulus. In fact, when compared to unmodified DGEBA, the tri-functional epoxy shows a slight increase (5%) in glass transition temperature at 10 wt.% concentration. The enhanced crosslinking of DGEBA (90 wt.%)/distilled triglycidylether of meta-amino phenol (10 wt.%) blends may be the possible reason for the improved glass transition. Finally, the influence of strain rate, temperature and moisture were investigated for both the neat DGEBA and the best performing modified system. The neat DGEBA was steadily outperformed by its modified counterpart in every condition.


Sign in / Sign up

Export Citation Format

Share Document