Conductive Nanomaterials used in Bioinks for 3D Bioprinting

Nano LIFE ◽  
2021 ◽  
Vol 11 (02) ◽  
pp. 2130005
Author(s):  
Sheba Goklany

Biofabrication for tissue engineering and regenerative medicine is a rapidly evolving field that incorporates bioprinting or bioassembly for the development of biologically functional products with structural organization using cells, bioactive molecules, and biomaterials. Bioprinting is a biofabrication technology that utilizes biomaterials, living cells, and supporting materials, called bioink, to generate three-dimensional tissue constructs. Bioprinting offers several advantages over traditional scaffolding and microengineering methods such as precise architecture control, high reproducibility, and versatility. The ideal bioink should possess appropriate structural, mechanical, gelation, rheological, chemical, biological, degradation, and biomimetic properties for the desired application of the final product. Several natural and synthetic bioinks have been developed and this review has focused on conductive nanomaterials that have been used in combination with hydrogel materials for bioink synthesis.

2015 ◽  
Vol 237 ◽  
pp. 221-226 ◽  
Author(s):  
Jakub Mielczarek ◽  
Grzegorz Gazdowicz ◽  
Jakub Kramarz ◽  
Piotr Łątka ◽  
Marcin Krzykawski ◽  
...  

3D bioprinting is an innovative method of manufacturing three-dimensional tissue-like structures. The method is based on a layer-by-layer deposition of biocompatible materials successively forming a scaffold for living cells. The technology allows to fabricate complicated tissue morphology, including vascular-like networks. The range of potential applications of 3D bioprinting is immense: from drug testing, across regenerative medicine, to organ transplantation. In this paper, we describe a prototype of a 3D bioprinter utilizing gelatin methacrylate (GelMA) doped with a photoinitiator as the printing substance. Biological requirements for the material, its synthesis and application adequacy for the bioprinting process are discussed. Technical details of the mechanical construction of the bioprinter and its control system are presented


2021 ◽  
Vol 926 (1) ◽  
pp. 012080
Author(s):  
C Amni ◽  
Marwan ◽  
S Aprilia ◽  
E Indarti

Abstract Three-dimensional printing (3DP) provides a fast and easy fabrication process without demanding post-processing. 3D-bioprinting is a special class in 3DP. Bio-printing is the process of accurately 3DP structural design using filament. 3D bio-printing technology is still in the development stage, its application in various engineering continues to increase, such as in tissue engineering. As a forming material in 3D printing, many types of commercial filaments have been developed. Filaments can be produced from either natural or synthetic biomaterials alone, or a combination of the two as a hybrid material. The ideal filament must have precise mechanical, rheological and biological properties. Polycaprolactone (PCL) is specifically developed and optimized for bio-printing of 3D structures. PCL is a strategy in 3D printing to better control interconnectivity and porosity spatially. Structural stability and less sensitive properties environmental conditions, such as temperature, humidity, etc make PCL as an ideal material for the FDM fabrication process. In this review, we provide an in-depth discussion of current research on PCL as a filament currently used for 3D bio-printing and outline some future perspectives in their further development.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1908
Author(s):  
Shinji Sakai ◽  
Ryohei Harada ◽  
Takashi Kotani

Freeform bioprinting, realized by extruding ink-containing cells into supporting materials to provide physical support during printing, has fostered significant advances toward the fabrication of cell-laden soft hydrogel constructs with desired spatial control. For further advancement of freeform bioprinting, we aimed to propose a method in which the ink embedded in supporting materials gelate through a cytocompatible and rapid cascade reaction between oxidase and peroxidase. To demonstrate the feasibility of the proposed method, we extruded ink containing choline, horseradish peroxidase (HRP), and a hyaluronic acid derivative, cross-linkable by HRP-catalyzed reaction, into a supporting material containing choline oxidase and successfully obtained three-dimensional hyaluronic acid-based hydrogel constructs with good shape fidelity to blueprints. Cytocompatibility of the bioprinting method was confirmed by the comparable growth of mouse fibroblast cells, released from the printed hydrogels through degradation on cell culture dishes, with those not exposed to the printing process, and considering more than 85% viability of the enclosed cells during 10 days of culture. Owing to the presence of derivatives of the various biocompatible polymers that are cross-linkable through HRP-mediated cross-linking, our results demonstrate that the novel 3D bioprinting method has great potential in tissue engineering applications.


2019 ◽  
Vol 13 (3) ◽  
Author(s):  
Prabhuti Kharel ◽  
Likitha Somasekhar ◽  
Amy Vecheck ◽  
Kunal Mitra

Bioprinting is a technique of creating 3D cell-laden structures by accurately dispensing biomaterial to form complex synthetic tissue. The printed constructs aim to mimic the native tissue by preserving the cell functionality and viability within the printed structure. The 3D bioprinting system presented in this paper aims to facilitate the process of 3D bioprinting through its ability to control the environmental parameters within an enclosed printing chamber. This design of the bioprinter targets to eliminate the need for a laminar flow hood, by regulating the necessary environmental conditions important for cell survival, especially during long duration prints. A syringe-based extrusion (SBE) deposition method comprising multiple nozzles is integrated into the system. This allows for a wider selection of biomaterials that can be used for the formation of the extracellular matrix (ECM). Tissue constructs composed of alginate-gelatin hydrogels were mixed with fibrinogen and human endothelial cells which were then characterized and compared using two methodologies: casted and bioprinted. Furthermore, vasculature was incorporated in the bioprinted constructs using sacrificial printing. Structural and functional characterization of the constructs were performed by assessing rheological, mechanical properties, and analyzing live-dead assay measurements.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2262 ◽  
Author(s):  
Andrea S. Theus ◽  
Liqun Ning ◽  
Boeun Hwang ◽  
Carmen Gil ◽  
Shuai Chen ◽  
...  

Three-dimensional (3D) bioprinting is an additive manufacturing process that utilizes various biomaterials that either contain or interact with living cells and biological systems with the goal of fabricating functional tissue or organ mimics, which will be referred to as bioinks. These bioinks are typically hydrogel-based hybrid systems with many specific features and requirements. The characterizing and fine tuning of bioink properties before, during, and after printing are therefore essential in developing reproducible and stable bioprinted constructs. To date, myriad computational methods, mechanical testing, and rheological evaluations have been used to predict, measure, and optimize bioinks properties and their printability, but none are properly standardized. There is a lack of robust universal guidelines in the field for the evaluation and quantification of bioprintability. In this review, we introduced the concept of bioprintability and discussed the significant roles of various physiomechanical and biological processes in bioprinting fidelity. Furthermore, different quantitative and qualitative methodologies used to assess bioprintability will be reviewed, with a focus on the processes related to pre, during, and post printing. Establishing fully characterized, functional bioink solutions would be a big step towards the effective clinical applications of bioprinted products.


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 679 ◽  
Author(s):  
Seyedmahmoud ◽  
Çelebi-Saltik ◽  
Barros ◽  
Nasiri ◽  
Banton ◽  
...  

Skeletal muscle tissue engineering aims to fabricate tissue constructs to replace or restore diseased or injured skeletal muscle tissues in the body. Several biomaterials and microscale technologies have been used in muscle tissue engineering. However, it is still challenging to mimic the function and structure of the native muscle tissues. Three-dimensional (3D) bioprinting is a powerful tool to mimic the hierarchical structure of native tissues. Here, 3D bioprinting was used to fabricate tissue constructs using gelatin methacryloyl (GelMA)-alginate bioinks. Mechanical and rheological properties of GelMA-alginate hydrogels were characterized. C2C12 myoblasts at the density 8 × 106 cells/mL were used as the cell model. The effects of alginate concentration (0, 6, and 8% (w/v)) and crosslinking mechanism (UV crosslinking or ionic crosslinking with UV crosslinking) on printability, cell viability, proliferation, and differentiation of bioinks were studied. The results showed that 10% (w/v) GelMA-8% (w/v) alginate crosslinked using UV light and 0.1 M CaCl2 provided the optimum niche to induce muscle tissue formation compared to other hydrogel compositions. Furthermore, metabolic activity of cells in GelMA bioinks was improved by addition of oxygen-generating particles to the bioinks. It is hoped that such bioprinted muscle tissues may find wide applications in drug screening and tissue regeneration.


2019 ◽  
Vol 5 (2.1) ◽  
Author(s):  
Wei Long Ng ◽  
Wai Yee Yeong

Over the years, the field of toxicology testing has evolved tremendously from the use of animal models to the adaptation of in vitro testing models. In this perspective article, we aim to bridge the gap between the regulatory authorities who performed the testing and approval of new chemicals and the scientists who designed and fabricated these in vitro testing models. An in-depth discussion of existing toxicology testing guidelines for skin tissue models (definition, testing models, principle, and limitations) is first presented to have a good understanding of the stringent requirements that are necessary during the testing process. Next, the ideal requirements of toxicology testing platform (in terms of fabrication, testing, and screening process) are discussed. We envisioned that the integration of three-dimensional bioprinting within miniaturized microfluidics platform would bring about a paradigm shift in the field of toxicology testing; providing standardization in the fabrication process, accurate and rapid deposition of test chemicals, real-time monitoring and high throughput screening for more efficient skin toxicology testing.


Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 366 ◽  
Author(s):  
Vahid Serpooshan ◽  
Murat Guvendiren

Three-dimensional (3D) bioprinting uses additive manufacturing techniques to fabricate 3D structures consisting of heterogenous selections of living cells, biomaterials, and active biomolecules [...]


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2958
Author(s):  
JunJie Yu ◽  
Su A Park ◽  
Wan Doo Kim ◽  
Taeho Ha ◽  
Yuan-Zhu Xin ◽  
...  

Three-dimensional (3D) bioprinting technology has emerged as a powerful biofabrication platform for tissue engineering because of its ability to engineer living cells and biomaterial-based 3D objects. Over the last few decades, droplet-based, extrusion-based, and laser-assisted bioprinters have been developed to fulfill certain requirements in terms of resolution, cell viability, cell density, etc. Simultaneously, various bio-inks based on natural–synthetic biomaterials have been developed and applied for successful tissue regeneration. To engineer more realistic artificial tissues/organs, mixtures of bio-inks with various recipes have also been developed. Taken together, this review describes the fundamental characteristics of the existing bioprinters and bio-inks that have been currently developed, followed by their advantages and disadvantages. Finally, various tissue engineering applications using 3D bioprinting are briefly introduced.


2021 ◽  
Author(s):  
Parvin Alizadeh ◽  
Mohammad Soltani ◽  
Rumeysa Tutar ◽  
Ehsanul Hoque Apu ◽  
Chima V. Maduka ◽  
...  

Abstract Existing methods of engineering alternatives to restore or replace damaged or lost tissues are not satisfactory due to the lack of suitable constructs that can fit precisely, function properly and integrate into host tissues. Recently, three-dimensional (3D) bioprinting approaches have been developed to enable the fabrication of pre-programmed synthetic tissue constructs that have precise geometries and controlled cellular composition and spatial distribution. New bioinks with electroconductive properties have the potential to influence cellular fates and function for directed healing of different tissue types including bone, heart and nervous tissue with the possibility of improved outcomes. In the present paper, we review the use of electroconductive biomaterials for the engineering of tissues via 3D printing and 3D bioprinting. Despite significant advances, there remain challenges to effective tissue replacement and we address these challenges and describe new approaches to advanced tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document