Investigating Effect of Conditioner Aggressiveness on Removal Rate during Interlayer Dielectric Chemical Mechanical Planarization through Confocal Microscopy and Dual Emission Ultraviolet-Enhanced Fluorescence Imaging

2010 ◽  
Vol 49 (2) ◽  
pp. 026501 ◽  
Author(s):  
Ting Sun ◽  
Len Borucki ◽  
Yun Zhuang ◽  
Yasa Sampurno ◽  
Fransisca Sudargho ◽  
...  
2013 ◽  
Vol 52 (1R) ◽  
pp. 018001 ◽  
Author(s):  
Xiaoyan Liao ◽  
Yun Zhuang ◽  
Leonard J. Borucki ◽  
Jiang Cheng ◽  
Siannie Theng ◽  
...  

2005 ◽  
Vol 867 ◽  
Author(s):  
Caprice Gray ◽  
Daniel Apone ◽  
Chris Rogers ◽  
Vincent P. Manno ◽  
Chris Barns ◽  
...  

AbstractThe interaction of the wafer, slurry and pad determines the material removal rate during Chemical Mechanical Planarization (CMP). Dual emission laser induced fluorescence (DELIF) provides a means to measure the slurry layer thickness between the wafer and a Fruedenbergy FX9 pad during CMP with high spatial (4.3 μm/pixel) and temporal resolution (2 Hz). In this paper we present some preliminary measurements of pad compression using DELIF to measure the standard deviation of asperity height. Static slurry layer images were captured at high (70 kPa) and low (0 kPa) down-force applied to the wafer. In-situ, dynamic images at 10 kPa downforce applied to etched wafers were imaged. Two wafers were etched such that they contain square wells, one wafer with 27 μm and the other will 14.5 μm deep wells. In the static case, asperity compression is directly related the amount of fluid displaced. In the dynamic case, asperity compression is 35% greater under the 27 μm wells than the 14.5 μm wells.


2005 ◽  
Vol 867 ◽  
Author(s):  
Serdar Aksu

AbstractChemical mechanical planarization (CMP), which can globally planarize both silicon dioxide (the prevalent interlayer dielectric), and copper films, has become the key process in the damascene method used for producing integrated circuit (IC) devices with multilevel copper interconnects. Cu CMP is typically carried out with slurries containing oxidizing agents, complexing agents, and corrosion inhibitors as the principal chemical components. In such slurries, complexing agents enhance the solubility of copper and increase the dissolution rate of the abraded material in Cu CMP. They also assist achieving high copper removal rates during dynamic polishing conditions. The nature of the complexing agent used, the pH and the redox potential of the slurry system are among the main factors controlling the dissolution and passivation behaviors of copper during CMP. Consequently, these factors are intimately related to the key CMP performance metrics such as removal rate and planarity. In this paper, potentialpH diagrams of copper in aqueous systems containing a number of organic complexing agents including ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), oxalic acid and malonic acid are presented. The predominance regions of copper complexes under different copper and ligand activities and their implications on copper removal during CMP are discussed.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Chun-Yang Wang ◽  
Jui-che Tsai ◽  
Ching-Cheng Chuang ◽  
Yao-Sheng Hsieh ◽  
Chia-Wei Sun

The activated leukocyte attacked the vascular endothelium and the associated increase in VEcadherin number was observed in experiments. The confocal microscopic system with a prism-based wavelength filter was used for multiwavelength fluorescence measurement. Multiwavelength fluorescence imaging based on the VEcadherin within the aorta segment of a rat was achieved. The confocal microscopic system capable of fluorescence detection of cardiovascular tissue is a useful tool for measuring the biological properties in clinical applications.


2021 ◽  
Vol 11 (4) ◽  
pp. 1783
Author(s):  
Ming-Yi Tsai ◽  
Kun-Ying Li ◽  
Sun-Yu Ji

In this study, special ceramic grinding plates impregnated with diamond grit and other abrasives, as well as self-made lapping plates, were used to prepare the surface of single-crystal silicon carbide (SiC) wafers. This novel approach enhanced the process and reduced the final chemical mechanical planarization (CMP) polishing time. Two different grinding plates with pads impregnated with mixed abrasives were prepared: one with self-modified diamond + SiC and a ceramic binder and one with self-modified diamond + SiO2 + Al2O3 + SiC and a ceramic binder. The surface properties and removal rate of the SiC substrate were investigated and a comparison with the traditional method was conducted. The experimental results showed that the material removal rate (MRR) was higher for the SiC substrate with the mixed abrasive lapping plate than for the traditional method. The grinding wear rate could be reduced by 31.6%. The surface roughness of the samples polished using the diamond-impregnated lapping plate was markedly better than that of the samples polished using the copper plate. However, while the surface finish was better and the grinding efficiency was high, the wear rate of the mixed abrasive-impregnated polishing plates was high. This was a clear indication that this novel method was effective and could be used for SiC grinding and lapping.


2013 ◽  
Vol 634-638 ◽  
pp. 2949-2954
Author(s):  
Xin Liang Tang ◽  
Yu Ling Liu ◽  
Hong Yuan Zhang ◽  
Jie Bao

Silica abrasive plays an important role in chemical mechanical planarization (CMP) of copper. In this paper, effect of different silica abrasive concentrations on copper removal rate and planarization performance of copper was investigated. The results show that the copper removal rate was increased as the concentration of silica abrasive increase. However, excessive abrasive will lead to a decreased copper removal rate. The initial step height values of the multilayer copper wafers were all about 2500Å, and after being polished for 30s, the remaining values of step height of slurry A, B, C and D were 717 Å, 906 Å, 1222 Å and 1493 Å. It indicates that alkaline copper slurries with different abrasive concentrations all had a good planarization performance on copper patterned wafer CMP. As the abrasive concentration increased, the planarization capability was enhanced.


2007 ◽  
Vol 991 ◽  
Author(s):  
Tae-Young Kwon ◽  
In-Kwon Kim ◽  
Jin-Goo Park

ABSTRACTThe purpose of this study was to characterize KOH based electrolytes and effects of additives on electro-chemical mechanical planarization. The electrochemical mechanical polisher was made to measure the potentiodynamic curve and removal rate of Cu. The potentiodynamic curves were measured in static and dynamic states in investigated electrolytes using a potentiostat. Cu disk of 2 inch was used as a working electrode and Pt electroplated platen was used as a counter electrode. KOH was used as the electrolyte. H2O2 and citric acid were used as additives for the ECMP of Cu. In static and dynamic potentiodynamic measurements, the corrosion potential decreased and corrosion current increased as a function of KOH concentration. In dynamic state, different potentiodynamic curve was obtained when compared to the static state. The current density did not decrease in passivation region by mechanical polishing effect. The static etch and removal rate were measured as function of KOH concentration and applied voltage. In ECMP system, polishing was performed at 30 rpm and 1 psi. The removal rate was about 60 nm/min at 0.3 V when 5 wt% KOH was used. Also, the effect of additive was investigated in KOH based electrolyte on removal rates. As a result, The removal rate was increased to 350 nm/min when 5wt% KOH, 5vol% H2O2, 0.3 M citric acid were used.


2000 ◽  
Vol 612 ◽  
Author(s):  
Shyama P. Mukherjee ◽  
Joseph A. Levert ◽  
Donald S. Debear

ABSTRACTThe present work describes the process principles of “Spin-Etch Planarization” (SEP), an emerging method of planarization of dual damascene copper interconnects. The process involves a uniform removal of copper and the planarization of surface topography of copper interconnects by dispensing abrasive free etchants to a rotating wafer. The primary process parameters comprise of (a) Physics and chemistry of etchants, and (b) Nature of fluid flow on a spinning wafer. It is evident, that unlike conventional chemical-mechanical planarization, which has a large number of variables due to the presence of pads, normal load, and abrasives, SEP has a smaller number of process parameters and most of them are primary in nature. Based on our preliminary works, we have presented the basic technical parameters that contribute to the process and satisfy the basic requirements of planarization such as (a) Uniformity of removal (b) Removal rate (c) Degree of Planarization (d) Selectivity. The anticipated advantages and some inherent limitations are discussed in the context of process principles. We believe that when fully developed, SEP will be a simple, predictable and controllable process.


Sign in / Sign up

Export Citation Format

Share Document