scholarly journals Hypozonal gold mineralisation in shear zone hosted deposits driven by fault valve action and fluid mixing: the Nalunaq deposit, Greenland

2021 ◽  
pp. SP516-2021-38
Author(s):  
Martin Smith ◽  
David Banks ◽  
Santanu Ray ◽  
Francis Bowers

AbstractThe Nalunaq deposit, Greenland, is a hypozonal, shear zone-hosted, Au deposit. The shear zone has previously been interpreted to have undergone 4 stages of deformation, accompanied by fluid flow,and vein formation. Coupled with previous trapping T estimates, fluid inclusion data are consistent with trapping of fluids with salinities between 28-45 wt. % NaCl eq., from 300-475°C during D2 and D3, with pressure varying between ∼800 and 100Mpa. The range reflects pressure cycling during seismic slip related depressurisation events. D4 fluids were lower salinity and trapped from 200-300°C, at ∼50-200Mpa during late stage normal faulting. The variation in major element chemistry is consistent with ingress of hypersaline, granitoid equilibrated fluids into the shear zone system and mixing with fluids that had reacted with the host metamorphic rocks. D4 stage fluids represent ingress of meteoric fluids into the system. Gold contents in inclusion fluids range from ∼300-10mg/kg. These data are consistent with the high P-T solubility of Au as AuHS(H2S)30 complexes, and Au deposition by decompression and cooling. The high salinities also suggest Au transport as chloride complexes may have been possible. Gold distribution was modified by the release of chemically bound or nanoscale Au during sulphide oxidation at the D4 stage.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5635812

2020 ◽  
Vol 178 (1) ◽  
pp. jgs2020-109
Author(s):  
Paulo Castellan ◽  
Gustavo Viegas ◽  
Frederico M. Faleiros

Fabrics of the East Pernambuco shear zone (EPSZ) were studied via microstructural analysis, mineral chemistry and isochemical phase diagram modelling to constrain the pressure and temperature conditions of deformation during shearing. Granitic mylonites show fractured feldspar porphyroclasts embedded in a fine-grained, recrystallized quartzo-feldspathic matrix. These mylonites grade laterally into banded ultramylonites characterized by stretched feldspar clasts alternated with recrystallized quartz bands. Fractures in these ultramylonites are filled by phyllosilicates. The mineral chemistry of the feldspars points to systematic changes between porphyroclasts, grains within fractures and fine-grained mixtures. Quartz crystallographic fabrics in the mylonites suggest activation of prism slip, while the ultramylonites show the activation of both rhomb and basal slip systems. Thermodynamic modelling suggests that the mylonites were formed at 4.75 ± 0.25 kbar and 526 ± 9°C, while the ultramylonites yield conditions of 5.9 ± 1 kbar and 437 ± 17°C. These observations suggest that the EPSZ records a heterogeneous path of strain accommodation, marked by decreasing temperature from its western sector to its eastern termination. The differences in metamorphic conditions are consistent with a transitional, brittle–ductile strain regime. Such characteristics indicate that the EPSZ is a Neoproterozoic shear belt nucleated and heterogeneously exhumed at the brittle–ductile transition, possibly in an intracontinental setting.Supplementary Material: EPMA analysis of feldspars in Caruaru and Gravatá domains and T-X(O2) pseudosections are available at https://doi.org/10.6084/m9.figshare.c.5125957


2021 ◽  
pp. jgs2021-038
Author(s):  
Yanlong Dong ◽  
Shuyun Cao ◽  
Franz Neubauer ◽  
Haobo Wang ◽  
Wenyuan Li ◽  
...  

Lateral extrusion of blocks is a well-known geological process during continent–continent collision, which always expresses by either brittle strike-slip faults or ductile shear zones. However, vertical motion along such fault systems remains poorly constrained. The Gaoligong shear zone (GLG-SZ) formed the western boundary of the Indochina block during the India–Eurasia collision, resulting in the exhumation of deep crustal rocks, including a large volume of syntectonic granites. Combined zircon U-Pb dating and 40Ar/39Ar thermochronology revealed that both the unfoliated and foliated granitic intrusions were emplaced during the Early Cretaceous (112–125 Ma), post-magmatic melting occurred from the Early Oligocene (ca. 35 Ma), and subsequent cooling during the Middle Miocene (ca. 13 Ma). The average emplacement depth of Early Cretaceous samples revealed that at least 15 km of hangingwall of the GLG-SZ must have been removed by vertical motion during shearing. Syn-shearing exhumation underlines the role of the lateral motion of the shear zone initiation by magma-assisted rheological weakening and exhumation at high ambient temperatures within the shear zone. A new model links magmatic channel flow underneath the Tibetan Plateau with magma intrusions and the high geothermal gradients along the shear belts, such as the GLG-SZ.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5598365


2021 ◽  
pp. jgs2021-040
Author(s):  
David R.M. Pattison ◽  
Shantal A. Goldsmith

The metamorphism of the Buchan block in northeast Scotland, and its relation to the Barrovian domain to its west, have been reassessed from consideration of mineral assemblages, microstructures, phase equilibrium modelling and monazite U-Pb geochronology. Zones of increasing metamorphic grade surround a central low grade domain (biotite zone) and define a northward-opening, U-shaped metamorphic map pattern ascribed to post-metamorphic folding. The eastern and southern Buchan domain show the classic Buchan-type prograde sequence cordierite – andalusite – sillimanite – migmatite/gneiss, representing a metamorphic field gradient of gently increasing pressure between 2.5-3.0 kbar, ∼550 °C and 3.5-4.0 kbar, ∼750 °C. A lower pressure metamorphic field gradient (by less than ∼0.5 kbar) is interpreted for the northeastern Buchan domain. The west Buchan domain shows a prograde sequence of staurolite+andalusite – sillimanite – gneiss/migmatite, representing a metamorphic field gradient higher by ∼1 kbar or less than the classic sequence. Uniquely in the northwestern Buchan domain is a staurolite-cordierite-andalusite domain in which staurolite-bearing schists are interpreted to have been overprinted by cordierite+andalusite assemblages. Monazite U-Pb geochronology of schists and gneisses from the Buchan block, including the Cowhythe and Ellon gneisses, yields ages in the range 470 ±5 Ma, supporting geological evidence that the gneisses are metamorphosed Dalradian strata rather than older basement gneisses. The metamorphic ages are similar to the ages of mafic igneous intrusions in the Buchan block, even though many of the exposed intrusions post-date the regional metamorphic zones. The Buchan metamorphic zones are truncated to the west by the Portsoy-Duchray Hill lineament (PDHL), a ductile shear zone that juxtaposes the Buchan rocks against higher-pressure, lower-temperature (kyanite-bearing) Barrovian schists to the west. A 2-15 km wide corridor of andalusite pseudomorphed by kyanite occurs between the PDHL and the Keith shear zone to its west. Monazite geochronology of the Barrovian rocks west of Portsoy shows little evidence of the c. 470 Ma signature of the Buchan block, instead yielding a dominant cluster of ages at c. 450 Ma and a more poorly defined grouping at c. 490 Ma.Supplementary materials: Analytical methods, thermodynamic modelling; tables S1-S13; figures S1-S5 are available at https://doi.org/10.6084/m9.figshare.c.5536745


2021 ◽  
pp. SP513-2021-60
Author(s):  
Lukáš Krmíček ◽  
Tomáš Magna ◽  
Ashutosh Pandey ◽  
N. V. Chalapathi Rao ◽  
Jindřich Kynický

AbstractOur pilot study reveals potential fingerprints of Li isotopes recorded in the Mesoproterozoic (∼1.4-1.1 Ga) kimberlites, lamproites and lamprophyres from the Eastern Dharwar Craton and Paleocene (62 Ma) orangeite from the Bastar Craton in India. The new data are interpreted in the context of available Li isotope composition of lamproitic to lamprophyric rocks occurring in Variscan (Bohemian Massif) and Alpine-Himalayan (SW Tibet) orogenic belts formed in response to Gondwana-Pangea amalgamation and break-up. As a result of supercontinents development, kimberlites from the Eastern Dharwar Craton and ‘orangeite’ from the Bastar Craton show clear presence of a component with a heavy Li isotope signature (δ7Li up to 9.7‰) similar to an ancient altered oceanic crust, whereas the Eastern Dharwar Craton lamproites (2.3-6.3‰) and lamprophyres (3.3-6.7‰) show Li isotope signatures indicative of a dominant contribution from heterogeneous lithospheric mantle. Variscan lamprophyric to lamproitic rocks and post-collisional mantle-derived (ultra)potassic volcanic rocks from SW Tibet, i.e., rocks from the orogenic belts outside the cratonic areas, are characterized by a clear Li isotope shift towards isotopically lighter component (δ7Li as low as -9.5‰) comparable with the involvement of an evolved continental crust and high-pressure metamorphic rocks in their orogenic mantle source. Such components with isotopically light Li are strikingly missing in the source of cratonic kimberlites, lamproites and lamprophyres.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5495097


2021 ◽  
pp. jgs2020-061
Author(s):  
Melina C. B. Esteves ◽  
Frederico M. Faleiros

The western margin of the São Francisco Craton, central Brazil presents a 1300 km long foreland fold–thrust belt where Ediacaran-Cambrian (560–520 Ma) metasedimentary rocks from the Bambuí Group were subsequently deformed during post-collisional stages (520–495 Ma) related to Gondwana assembly. This scenario provides an opportunity to quantify fluid flow regimes and fault-related processes that were active in exhumed foreland fold–thrust zones, which were estimated based on structural, microstructural and fluid inclusion studies of syntectonic veins and host rocks. Kaolinite-bearing synkinematic mineral assemblages from metasedimentary rocks, thermodynamic models and grain-scale deformation accommodated by dissolution–precipitation creep and intracrystalline deformation indicate metamorphic and deformational conditions of 250–270°C. Subhorizontal extensional veins formed under subhorizontal shortening and subvertical extension, supporting vein development under a fold–thrust regime that formed regional NW–SE-trending thrust fault zones and megafolds with NW–SE-trending axes. Orientation and growth microstructures indicate that NW–SE-trending subvertical cleavage-parallel veins formed under subhorizontal NE–SW extension, compatible with those inferred to produce mapped kilometre-scale gentle folds with NE–SW-trending traces. Two primary aqueous fluid inclusion assemblages (FIA) are distinguished by salinity variation: 2–21 wt% NaCleq. in subhorizontal veins and 6–0 wt% NaCleq. in cleavage-parallel subvertical veins. Fluid inclusion thermometry and microstructural analysis suggest that veins crystallized between 250 and 270°C under fluid pressure fluctuating within a range of 50–500 MPa (subhorizontal veins) and 80–320 MPa (cleavage-parallel subvertical veins), evidencing fault-valve behaviour. Trends of coupled decreases in salinity and homogenization temperatures in both FIA indicate downward mixing of meteoric fluids, which was more effective in subvertical veins and was in both cases enhanced by fault-valve behaviour. Dominance of moderate salinity and absence of CO2 and CH4 indicate that the fluids are dominated by formation waters. The salinity signature is similar to those of formation waters and metamorphic fluids derived from rocks of shallow marine environments worldwide.Supplementary material: Details of samples and analytical data are available at https://doi.org/10.6084/m9.figshare.c.5275031


2021 ◽  
pp. geochem2020-081
Author(s):  
Tom Meuzelaar ◽  
Pablo Núñez-Fernández ◽  
Agustín Martín-Izard ◽  
Daniel Arias-Prieto ◽  
Fernando Díaz-Riopa

Characterization of metamorphic rocks to evaluate waste material acid rock drainage potential is particularly challenging as commonly used laboratory methods can result in significant under-prediction of ARD potential. Static tests were conducted for over 300 samples from the Touro copper project and indicate that carbon-based methods frequently overestimate acid neutralization potential due to the presence of both graphite and manganese-iron carbonates. The Modified Sobek method more accurately accounts for the buffering capacity of carbonates and does not account for graphite, although aluminosilicate dissolution kinetics need to be evaluated in the context of sulfide oxidation rates. Historic sulfur assays for the project relied on methods insufficient to fully digest metamorphosed sulfides and required correction. The more aggressive Leco sulfur method provides accurate sulfur estimates and has been adopted for the project going forward.Static test metrics such as the Net Neutralization Potential or Neutralization Potential Ratio, therefore, can give misleading results when incorrect characterization methods are employed. Such metrics should be considered as screening level, used with caution, and complemented with careful field and laboratory kinetic tests. Preliminary humidity cell testing of five Touro samples suggests that terminal pH values for cells that have become acidic closely match predicted NAG pH values. The NAG pH test avoids some of the challenges associated with sulfur and carbon predictions in metamorphic rocks as it directly buffers sulfide oxidation acidity with available material neutralization potential. As such, NAG pH has been adopted as the accepted project metric for segregating acid-generating from non-acid-generating waste.Thematic collection: This article is part of the Hydrochemistry related to exploration and environmental issues collection available at: https://www.lyellcollection.org/cc/hydrochemistry-related-to-exploration-and-environmental-issuesSupplementary material:https://doi.org/10.6084/m9.figshare.c.5389948


2002 ◽  
Vol 39 (5) ◽  
pp. 749-764 ◽  
Author(s):  
Nicholas Culshaw ◽  
Peter Reynolds ◽  
Gavin Sinclair ◽  
Sandra Barr

We report amphibole and mica 40Ar/39Ar ages from the Makkovik Province. Amphibole ages from metamorphic rocks decrease towards the interior of the province, indicating a first-order pattern of monotonic cooling with progressive migration of the province into a more distal back-arc location. The amphibole data, in combination with muscovite ages, reveal a second-order pattern consisting of four stages corresponding to changing spatial and temporal configurations of plutonism and deformation. (1) The western Kaipokok domain cooled through muscovite closure by 1810 Ma, long after the cessation of arc magmatism. (2) The Kaipokok Bay shear zone, bounding the Kaipokok and Aillik domains, cooled through amphibole closure during 1805–1780 Ma, synchronous with emplacement of syn-tectonic granitoid plutons. (3) Between 1740 and 1700 Ma, greenschist-facies shearing occurred along the boundary between the Kaipokok domain and Nain Province synchronous with A-type plutonism and localized shearing in the western Kaipokok domain, cooling to muscovite closure temperatures in the Kaipokok Bay shear zone, and A-type plutonism and amphibole closure or resetting in the Aillik domain. (4) In the period 1650–1640 Ma, muscovite ages, an amphibole age from a shear zone, and resetting of plutonic amphibole indicate a thermal effect coinciding in part with Labradorian plutonism in the Aillik domain. Amphibole ages from dioritic sheets in the juvenile Aillik domain suggest emplacement between 1715 and 1685 Ma. Amphibole ages constrain crystallization of small mafic plutons in the Kaipokok domain (reworked Archean foreland) to be no younger than 1670–1660 Ma. These ages are the oldest yet obtained for Labradorian plutonism in the Makkovik Province.


2021 ◽  
pp. SP520-2021-144
Author(s):  
Marie-Noëlle Guilbaud ◽  
Corentin Chédeville ◽  
Ángel Nahir Molina-Guadarrama ◽  
Julio Cesar Pineda-Serrano ◽  
Claus Siebe

AbstractThe eruption of the ∼10 km3 rhyolitic Las Derrumbadas twin domes about 2000 yrs ago has generated a wide range of volcano-sedimentary deposits in the Serdán-Oriental lacustrine basin, Trans-Mexican Volcanic Belt. Some of these deposits have been quarried, creating excellent exposures. In this paper we describe the domes and related products and interpret their mode of formation, reconstructing the main phases of the eruption as well as syn-and-post eruptive erosional processes. After an initial phreatomagmatic phase that built a tuff ring, the domes grew as an upheaved plug lifting a thick sedimentary pile from the basin floor. During uplift, the domes collapsed repeatedly to form a first-generation of hetero-lithologic hummocky debris avalanche deposits. Subsequent dome growth produced a thick talus and pyroclastic density currents. Later, the hydrothermally-altered over-steepened dome peaks fell to generate 2nd generation, mono-lithologic avalanches. Subsequently, small domes grew in the collapse scars. From the end of the main eruptive episode onwards, heavy rains remobilized parts of the dome carapaces and talus, depositing lahar aprons. Las Derrumbadas domes are still an important source of sediments in the basin, and ongoing mass-wasting processes are associated with hazards that should be assessed, given their potential impact on nearby populations.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5752296


2021 ◽  
pp. jgs2021-035
Author(s):  
Wanchese M. Saktura ◽  
Solomon Buckman ◽  
Allen P. Nutman ◽  
Renjie Zhou

The Jurassic–Cretaceous Tsoltak Formation from the eastern borderlands of Ladakh Himalaya consists of conglomerates, sandstones and shales, and is intruded by norite sills. It is the oldest sequence of continent-derived sedimentary rocks within the Shyok Suture. It also represents a rare outcrop of the basement rocks to the voluminous Late Cretaceous–Eocene Ladakh Batholith. The Shyok Formation is a younger sequence of volcaniclastic rocks that overlie the Tsoltak Formation and record the Late Cretaceous closure of the Mesotethys Ocean. The petrogenesis of these formations, ophiolite-related harzburgites and norite sill is investigated through petrography, whole-rock geochemistry and U–Pb zircon geochronology. The youngest detrital zircon grains from the Tsoltak Formation indicate Early Cretaceous maximum depositional age and distinctly Gondwanan, Lhasa microcontinent-related provenance with no Eurasian input. The Shyok Formation has Late Cretaceous maximum depositional age and displays a distinct change in provenance to igneous detritus characteristic of the Jurassic–Cretaceous magmatic arc along the southern margin of Eurasia. This is interpreted as a sign of collision of the Lhasa microcontinent and the Shyok ophiolite with Eurasia along the once continuous Shyok–Bangong Suture. The accreted terranes became the new southernmost margin of Eurasia and the basement to the Trans-Himalayan Batholith associated with the India-Eurasia convergence.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5633162


2021 ◽  
pp. geochem2021-074
Author(s):  
Godson Godfray

Successful gold exploration projects depend on a piece of clear information on the association between gold, trace elements, and mineralization controlling factors. The use of soil geochemistry has been an important tool in pinpointing exploration targets during the early stage of exploration. This study aimed to establish the gold distribution, the elemental association between gold and its pathfinder elements such as Cu, Zn, Ag, Ni, Co, Mn, Fe, Cd, V, Cr, Ti, Sc, In, and Se and identify lithologies contributing to the overlying residual soils. From cluster analysis, a high similarity level of 53.93% has been shown with Ag, Cd, and Se at a distance level of 0.92. Au and Se have a similarity level of 65.87% and a distance level of 0.68, hence is proposed to be the most promising pathfinder element. PCA, FA, and the Pearson's correlation matrix of transformed data of V, Cu, Ni, Fe, Mn, Cr, and Co and a stronger correlation between Pb and U, Th, Na, K, Sn, Y, Ta and Be shows that source gold mineralization might be associated with both hornblende gneisses interlayered with quartzite, tonalite, and tonalitic orthogneiss. From the contour map and gridded map of Au and its pathfinder elements, it has been noted that their anomalies and target generated are localized in the Northern part of the area. The targets trend ESE to WNW nearly parallel to the shear zones as a controlling factor of Au mineralization emplacement.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5721965


Sign in / Sign up

Export Citation Format

Share Document