scholarly journals Classi-Fly: Inferring Aircraft Categories from Open Data

2021 ◽  
Vol 12 (6) ◽  
pp. 1-23
Author(s):  
Martin Strohmeier ◽  
Matthew Smith ◽  
Vincent Lenders ◽  
Ivan Martinovic

In recent years, air traffic communication data has become easy to access, enabling novel research in many fields. Exploiting this new data source, a wide range of applications have emerged, from weather forecasting to stock market prediction, or the collection of intelligence about military and government movements. Typically, these applications require knowledge about the metadata of the aircraft, specifically its operator and the aircraft category. armasuisse Science + Technology , the R&D agency for the Swiss Armed Forces, has been developing Classi-Fly, a novel approach to obtain metadata about aircraft based on their movement patterns. We validate Classi-Fly using several hundred thousand flights collected through open source means, in conjunction with ground truth from publicly available aircraft registries containing more than 2 million aircraft. We show that we can obtain the correct aircraft category with an accuracy of greater than 88%. In cases, where no metadata is available, this approach can be used to create the data necessary for applications working with air traffic communication. Finally, we show that it is feasible to automatically detect particular sensitive aircraft such as police and surveillance aircraft using this method.

Author(s):  
О. Кravchuk ◽  
V. Symonenkov ◽  
I. Symonenkova ◽  
O. Hryhorev

Today, more than forty countries of the world are engaged in the development of military-purpose robots. A number of unique mobile robots with a wide range of capabilities are already being used by combat and intelligence units of the Armed forces of the developed world countries to conduct battlefield intelligence and support tactical groups. At present, the issue of using the latest information technology in the field of military robotics is thoroughly investigated, and the creation of highly effective information management systems in the land-mobile robotic complexes has acquired a new phase associated with the use of distributed information and sensory systems and consists in the transition from application of separate sensors and devices to the construction of modular information subsystems, which provide the availability of various data sources and complex methods of information processing. The purpose of the article is to investigate the ways to increase the autonomy of the land-mobile robotic complexes using in a non-deterministic conditions of modern combat. Relevance of researches is connected with the necessity of creation of highly effective information and control systems in the perspective robotic means for the needs of Land Forces of Ukraine. The development of the Armed Forces of Ukraine management system based on the criteria adopted by the EU and NATO member states is one of the main directions of increasing the effectiveness of the use of forces (forces), which involves achieving the principles and standards necessary for Ukraine to become a member of the EU and NATO. The inherent features of achieving these criteria will be the transition to a reduction of tasks of the combined-arms units and the large-scale use of high-precision weapons and land remote-controlled robotic devices. According to the views of the leading specialists in the field of robotics, the automation of information subsystems and components of the land-mobile robotic complexes can increase safety, reliability, error-tolerance and the effectiveness of the use of robotic means by standardizing the necessary actions with minimal human intervention, that is, a significant increase in the autonomy of the land-mobile robotic complexes for the needs of Land Forces of Ukraine.


2021 ◽  
Vol 5 (EICS) ◽  
pp. 1-23
Author(s):  
Markku Laine ◽  
Yu Zhang ◽  
Simo Santala ◽  
Jussi P. P. Jokinen ◽  
Antti Oulasvirta

Over the past decade, responsive web design (RWD) has become the de facto standard for adapting web pages to a wide range of devices used for browsing. While RWD has improved the usability of web pages, it is not without drawbacks and limitations: designers and developers must manually design the web layouts for multiple screen sizes and implement associated adaptation rules, and its "one responsive design fits all" approach lacks support for personalization. This paper presents a novel approach for automated generation of responsive and personalized web layouts. Given an existing web page design and preferences related to design objectives, our integer programming -based optimizer generates a consistent set of web designs. Where relevant data is available, these can be further automatically personalized for the user and browsing device. The paper includes presentation of techniques for runtime adaptation of the designs generated into a fully responsive grid layout for web browsing. Results from our ratings-based online studies with end users (N = 86) and designers (N = 64) show that the proposed approach can automatically create high-quality responsive web layouts for a variety of real-world websites.


Epidemiologia ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 315-324
Author(s):  
Juan M. Banda ◽  
Ramya Tekumalla ◽  
Guanyu Wang ◽  
Jingyuan Yu ◽  
Tuo Liu ◽  
...  

As the COVID-19 pandemic continues to spread worldwide, an unprecedented amount of open data is being generated for medical, genetics, and epidemiological research. The unparalleled rate at which many research groups around the world are releasing data and publications on the ongoing pandemic is allowing other scientists to learn from local experiences and data generated on the front lines of the COVID-19 pandemic. However, there is a need to integrate additional data sources that map and measure the role of social dynamics of such a unique worldwide event in biomedical, biological, and epidemiological analyses. For this purpose, we present a large-scale curated dataset of over 1.12 billion tweets, growing daily, related to COVID-19 chatter generated from 1 January 2020 to 27 June 2021 at the time of writing. This data source provides a freely available additional data source for researchers worldwide to conduct a wide and diverse number of research projects, such as epidemiological analyses, emotional and mental responses to social distancing measures, the identification of sources of misinformation, stratified measurement of sentiment towards the pandemic in near real time, among many others.


2013 ◽  
Vol 6 (1) ◽  
pp. 453-494 ◽  
Author(s):  
D. S. Moreira ◽  
S. R. Freitas ◽  
J. P. Bonatti ◽  
L. M. Mercado ◽  
N. M. É. Rosário ◽  
...  

Abstract. This article presents the development of a new numerical system denominated JULES-CCATT-BRAMS, which resulted from the coupling of the JULES surface model to the CCATT-BRAMS atmospheric chemistry model. The performance of this system in relation to several meteorological variables (wind speed at 10 m, air temperature at 2 m, dew point temperature at 2 m, pressure reduced to mean sea level and 6 h accumulated precipitation) and the CO2 concentration above an extensive area of South America is also presented, focusing on the Amazon basin. The evaluations were conducted for two periods, the wet (March) and dry (September) seasons of 2010. The statistics used to perform the evaluation included bias (BIAS) and root mean squared error (RMSE). The errors were calculated in relation to observations at conventional stations in airports and automatic stations. In addition, CO2 concentrations in the first model level were compared with meteorological tower measurements and vertical CO2 profiles were compared with aircraft data. The results of this study show that the JULES model coupled to CCATT-BRAMS provided a significant gain in performance in the evaluated atmospheric fields relative to those simulated by the LEAF (version 3) surface model originally utilized by CCATT-BRAMS. Simulations of CO2 concentrations in Amazonia and a comparison with observations are also discussed and show that the system presents a gain in performance relative to previous studies. Finally, we discuss a wide range of numerical studies integrating coupled atmospheric, land surface and chemistry processes that could be produced with the system described here. Therefore, this work presents to the scientific community a free tool, with good performance in relation to the observed data and re-analyses, able to produce atmospheric simulations/forecasts at different resolutions, for any period of time and in any region of the globe.


2021 ◽  
Vol 15 (5) ◽  
pp. 1-32
Author(s):  
Quang-huy Duong ◽  
Heri Ramampiaro ◽  
Kjetil Nørvåg ◽  
Thu-lan Dam

Dense subregion (subgraph & subtensor) detection is a well-studied area, with a wide range of applications, and numerous efficient approaches and algorithms have been proposed. Approximation approaches are commonly used for detecting dense subregions due to the complexity of the exact methods. Existing algorithms are generally efficient for dense subtensor and subgraph detection, and can perform well in many applications. However, most of the existing works utilize the state-or-the-art greedy 2-approximation algorithm to capably provide solutions with a loose theoretical density guarantee. The main drawback of most of these algorithms is that they can estimate only one subtensor, or subgraph, at a time, with a low guarantee on its density. While some methods can, on the other hand, estimate multiple subtensors, they can give a guarantee on the density with respect to the input tensor for the first estimated subsensor only. We address these drawbacks by providing both theoretical and practical solution for estimating multiple dense subtensors in tensor data and giving a higher lower bound of the density. In particular, we guarantee and prove a higher bound of the lower-bound density of the estimated subgraph and subtensors. We also propose a novel approach to show that there are multiple dense subtensors with a guarantee on its density that is greater than the lower bound used in the state-of-the-art algorithms. We evaluate our approach with extensive experiments on several real-world datasets, which demonstrates its efficiency and feasibility.


2021 ◽  
pp. 007542422098206
Author(s):  
Claudia Claridge ◽  
Ewa Jonsson ◽  
Merja Kytö

Even though intensifiers have received a good deal of attention over the past few decades, downtoners, comprising diminishers and minimizers, have remained by and large a neglected category (but cf. Brinton, this issue). Among downtoners, the adverb little or a little stands out as the most frequent item. It is multifunctional and serves as a diminishing and minimizing intensifier and also in non-degree uses as a quantifier, frequentative, and durative. Therefore, the present paper is devoted to the structural and functional profile of ( a) little in Late Modern English speech-related data. The data source is the socio-pragmatically annotated Old Bailey Corpus (OBC, version 2.0), which allows, among other things, the investigation of the usage of the item among different speaker groups. Our research charts the semantic and formal uses of adverbial little. Downtoner uses outnumber non-degree uses in the data, and diminishing uses are more common than minimizing uses. The formal realization is predominantly a little, with very rare determinerless or modified instances, such as very little. Little modifies a wide range of “targets,” but most frequently adjectives and prepositional phrases, focusing on human states and circumstantial detail. With regard to variation and change, adverbial little declines in use over the 200 years and is used more commonly by speakers from the lower social ranks and by the lay, non-professional participants in the courtroom.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sakthi Kumar Arul Prakash ◽  
Conrad Tucker

AbstractThis work investigates the ability to classify misinformation in online social media networks in a manner that avoids the need for ground truth labels. Rather than approach the classification problem as a task for humans or machine learning algorithms, this work leverages user–user and user–media (i.e.,media likes) interactions to infer the type of information (fake vs. authentic) being spread, without needing to know the actual details of the information itself. To study the inception and evolution of user–user and user–media interactions over time, we create an experimental platform that mimics the functionality of real-world social media networks. We develop a graphical model that considers the evolution of this network topology to model the uncertainty (entropy) propagation when fake and authentic media disseminates across the network. The creation of a real-world social media network enables a wide range of hypotheses to be tested pertaining to users, their interactions with other users, and with media content. The discovery that the entropy of user–user and user–media interactions approximate fake and authentic media likes, enables us to classify fake media in an unsupervised learning manner.


Author(s):  
Di Xian ◽  
Peng Zhang ◽  
Ling Gao ◽  
Ruijing Sun ◽  
Haizhen Zhang ◽  
...  

AbstractFollowing the progress of satellite data assimilation in the 1990s, the combination of meteorological satellites and numerical models has changed the way scientists understand the earth. With the evolution of numerical weather prediction models and earth system models, meteorological satellites will play a more important role in earth sciences in the future. As part of the space-based infrastructure, the Fengyun (FY) meteorological satellites have contributed to earth science sustainability studies through an open data policy and stable data quality since the first launch of the FY-1A satellite in 1988. The capability of earth system monitoring was greatly enhanced after the second-generation polar orbiting FY-3 satellites and geostationary orbiting FY-4 satellites were developed. Meanwhile, the quality of the products generated from the FY-3 and FY-4 satellites is comparable to the well-known MODIS products. FY satellite data has been utilized broadly in weather forecasting, climate and climate change investigations, environmental disaster monitoring, etc. This article reviews the instruments mounted on the FY satellites. Sensor-dependent level 1 products (radiance data) and inversion algorithm-dependent level 2 products (geophysical parameters) are introduced. As an example, some typical geophysical parameters, such as wildfires, lightning, vegetation indices, aerosol products, soil moisture, and precipitation estimation have been demonstrated and validated by in-situ observations and other well-known satellite products. To help users access the FY products, a set of data sharing systems has been developed and operated. The newly developed data sharing system based on cloud technology has been illustrated to improve the efficiency of data delivery.


2020 ◽  
Vol 3 (S1) ◽  
Author(s):  
Andreas Weigert ◽  
Konstantin Hopf ◽  
Nicolai Weinig ◽  
Thorsten Staake

Abstract Heat pumps embody solutions that heat or cool buildings effectively and sustainably, with zero emissions at the place of installation. As they pose significant load on the power grid, knowledge on their existence is crucial for grid operators, e.g., to forecast load and to plan grid operation. Further details, like the thermal reservoir (ground or air source) or the age of a heat pump installation renders energy-related services possible that utility companies can offer in the future (e.g., detecting wrongly calibrated installations, household energy efficiency checks). This study investigates the prediction of heat pump installations, their thermal reservoir and age. For this, we obtained a dataset with 397 households in Switzerland, all equipped with smart meters, collected ground truth data on installed heat pumps and enriched this data with weather data and geographical information. Our investigation replicates the state of the art in the area of heat pump detection and goes beyond it, as we obtain three major findings: First, machine learning can detect the existence of heat pumps with an AUC performance metric of 0.82, their heat reservoir with an AUC of 0.86, and their age with an AUC of 0.73. Second, heat pump existence can be better detected using data during the heating period than during summer. Third the number of training samples to detect the existence of heat pumps must not be necessarily large in terms of the number of training instances and observation period.


Sign in / Sign up

Export Citation Format

Share Document