scholarly journals Tcf7l2 localization of putative stem/progenitor cells in mouse conjunctiva

2016 ◽  
Vol 311 (2) ◽  
pp. C246-C254 ◽  
Author(s):  
Yadan Quan ◽  
Xinchun Zhang ◽  
Siying Xu ◽  
Kang Li ◽  
Feng Zhu ◽  
...  

Conjunctival integrity and preservation is indispensable for vision. The self-renewing capacity of conjunctival cells controls conjunctival homeostasis and regeneration; however, the source of conjunctival self-renewal and the underlying mechanism is currently unclear. Here, we characterize the biochemical phenotype and proliferative potential of conjunctival epithelial cells in adult mouse by detecting proliferation-related signatures and conducting clonal analysis. Further, we show that transcription factor 7-like 2 (T-cell-specific transcription factor 4), a DNA binding protein expressed in multiple types of adult stem cells, is highly correlated with proliferative signatures in basal conjunctival epithelia. Clonal studies demonstrated that Transcription factor 7-like 2 (Tcf7l2) was coexpressed with p63α and proliferating cell nuclear antigen (PCNA) in propagative colonies. Furthermore, Tcf7l2 was actively transcribed concurrently with conjunctival epithelial proliferation in vitro. Collectively, we suggest that Tcf7l2 may be involved in maintenance of stem/progenitor cells properties of conjunctival epithelial stem/progenitor cells, and with the fornix as the optimal site to isolate highly proliferative conjunctival epithelial cells in adult mice.

2005 ◽  
Vol 19 (4) ◽  
pp. 964-971 ◽  
Author(s):  
Eun Jig Lee ◽  
Theron Russell ◽  
Lisa Hurley ◽  
J. Larry Jameson

Abstract A subset of transcription factors function as pivotal regulators of cell differentiation pathways. Pituitary transcription factor-1 (Pit-1) is a tissue-specific homeodomain protein that specifies the development of pituitary somatotropes and lactotropes. In this study, adenovirus was used to deliver rat Pit-1 to mouse liver. Pit-1 expression was detected in the majority (50–80%) of hepatocyte nuclei after tail vein injection (2 × 109 plaque forming units). Pit-1 activated hepatic expression of the endogenous prolactin (PRL), GH, and TSHβ genes along with several other markers of lactotrope progenitor cells. Focal clusters (0.2–0.5% of liver cells per tissue section) of periportal cells were positive for PRL by immunofluorescent staining. The PRL-producing cells also expressed proliferating cell nuclear antigen as well as the hepatic stem cell markers (c-Kit, Thy1, and cytokeratin 14). These data indicate that Pit-1 induces the transient differentiation of hepatic progenitor cells into PRL-producing cells, providing additional evidence that transcription factors can specify the differentiation pathway of adult stem cells.


2000 ◽  
Vol 111 (1) ◽  
pp. 363-370 ◽  
Author(s):  
Katsuto Takenaka ◽  
Mine Harada ◽  
Tomoaki Fujisaki ◽  
Koji Nagafuji ◽  
Shinichi Mizuno ◽  
...  

2020 ◽  
Vol 16 (1) ◽  
pp. 85-89
Author(s):  
Mahesh M. Gouda ◽  
Ashwini Prabhu ◽  
Varsha Reddy S.V. ◽  
Rafa Jahan ◽  
Yashodhar P. Bhandary

Background: Bleomycin (BLM) is known to cause DNA damage in the Alveolar Epithelial Cells (AECs). It is reported that BLM is involved in the up-regulation of inflammatory molecules such as neutrophils, macrophages, chemokines and cytokines. The complex underlying mechanism for inflammation mediated progression of lung injury is still unclear. This investigation was designed to understand the molecular mechanisms associated with p53 mediated modulation of Plasminogen Activator Inhibitor-I (PAI-I) expression and its regulation by nano-curcumin formulation. Methods: A549 cells were treated with BLM to cause the cellular damage in vitro and commercially available nano-curcumin formulation was used as an intervention. Cytotoxic effect of nano-curcumin was analyzed using Methyl Thiazolyl Tetrazolium (MTT) assay. Protein expressions were analyzed using western blot to evaluate the p53 mediated changes in PAI-I expression. Results: Nano-curcumin showed cytotoxicity up to 88.5 % at a concentration of 20 μg/ml after 48 h of treatment. BLM exposure to the cells activated the phosphorylation of p53, which in turn increased PAII expression. Nano-curcumin treatment showed a protective role against phosphorylation of p53 and PAI-I expression, which in turn regulated the fibro-proliferative phase of injury induced by bleomycin. Conclusion: Nano-curcumin could be used as an effective intervention to regulate the severity of lung injury, apoptosis of AECs and fibro-proliferation during pulmonary injury.


2019 ◽  
Vol 14 (4) ◽  
pp. 305-319 ◽  
Author(s):  
Marietta Herrmann ◽  
Franz Jakob

The bone marrow hosts skeletal progenitor cells which have most widely been referred to as Mesenchymal Stem or Stromal Cells (MSCs), a heterogeneous population of adult stem cells possessing the potential for self-renewal and multilineage differentiation. A consensus agreement on minimal criteria has been suggested to define MSCs in vitro, including adhesion to plastic, expression of typical surface markers and the ability to differentiate towards the adipogenic, osteogenic and chondrogenic lineages but they are critically discussed since the differentiation capability of cells could not always be confirmed by stringent assays in vivo. However, these in vitro characteristics have led to the notion that progenitor cell populations, similar to MSCs in bone marrow, reside in various tissues. MSCs are in the focus of numerous (pre)clinical studies on tissue regeneration and repair.Recent advances in terms of genetic animal models enabled a couple of studies targeting skeletal progenitor cells in vivo. Accordingly, different skeletal progenitor cell populations could be identified by the expression of surface markers including nestin and leptin receptor. While there are still issues with the identity of, and the overlap between different cell populations, these studies suggested that specific microenvironments, referred to as niches, host and maintain skeletal progenitor cells in the bone marrow. Dynamic mutual interactions through biological and physical cues between niche constituting cells and niche inhabitants control dormancy, symmetric and asymmetric cell division and lineage commitment. Niche constituting cells, inhabitant cells and their extracellular matrix are subject to influences of aging and disease e.g. via cellular modulators. Protective niches can be hijacked and abused by metastasizing tumor cells, and may even be adapted via mutual education. Here, we summarize the current knowledge on bone marrow skeletal progenitor cell niches in physiology and pathophysiology. We discuss the plasticity and dynamics of bone marrow niches as well as future perspectives of targeting niches for therapeutic strategies.


1995 ◽  
Vol 15 (6) ◽  
pp. 3147-3153 ◽  
Author(s):  
G A Blobel ◽  
C A Sieff ◽  
S H Orkin

High-dose estrogen administration induces anemia in mammals. In chickens, estrogens stimulate outgrowth of bone marrow-derived erythroid progenitor cells and delay their maturation. This delay is associated with down-regulation of many erythroid cell-specific genes, including alpha- and beta-globin, band 3, band 4.1, and the erythroid cell-specific histone H5. We show here that estrogens also reduce the number of erythroid progenitor cells in primary human bone marrow cultures. To address potential mechanisms by which estrogens suppress erythropoiesis, we have examined their effects on GATA-1, an erythroid transcription factor that participates in the regulation of the majority of erythroid cell-specific genes and is necessary for full maturation of erythrocytes. We demonstrate that the transcriptional activity of GATA-1 is strongly repressed by the estrogen receptor (ER) in a ligand-dependent manner and that this repression is reversible in the presence of 4-hydroxytamoxifen. ER-mediated repression of GATA-1 activity occurs on an artificial promoter containing a single GATA-binding site, as well as in the context of an intact promoter which is normally regulated by GATA-1. GATA-1 and ER bind to each other in vitro in the absence of DNA. In coimmunoprecipitation experiments using transfected COS cells, GATA-1 and ER associate in a ligand-dependent manner. Mapping experiments indicate that GATA-1 and the ER form at least two contacts, which involve the finger region and the N-terminal activation domain of GATA-1. We speculate that estrogens exert effects on erythropoiesis by modulating GATA-1 activity through protein-protein interaction with the ER. Interference with GATA-binding proteins may be one mechanism by which steroid hormones modulate cellular differentiation.


Blood ◽  
2011 ◽  
Vol 117 (18) ◽  
pp. 4773-4777 ◽  
Author(s):  
Hal E. Broxmeyer ◽  
Man-Ryul Lee ◽  
Giao Hangoc ◽  
Scott Cooper ◽  
Nutan Prasain ◽  
...  

Abstract Cryopreservation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) is crucial for cord blood (CB) banking and transplantation. We evaluated recovery of functional HPC cryopreserved as mononuclear or unseparated cells for up to 23.5 years compared with prefreeze values of the same CB units. Highly efficient recovery (80%-100%) was apparent for granulocyte-macrophage and multipotential hematopoietic progenitors, although some collections had reproducible low recovery. Proliferative potential, response to multiple cytokines, and replating of HPC colonies was extensive. CD34+ cells isolated from CB cryopreserved for up to 21 years had long-term (≥ 6 month) engrafting capability in primary and secondary immunodeficient mice reflecting recovery of long-term repopulating, self-renewing HSCs. We recovered functionally responsive CD4+ and CD8+ T lymphocytes, generated induced pluripotent stem (iPS) cells with differentiation representing all 3 germ cell lineages in vitro and in vivo, and detected high proliferative endothelial colony forming cells, results of relevance to CB biology and banking.


2014 ◽  
Vol 26 (1) ◽  
pp. 212
Author(s):  
A. Lange-Consiglio ◽  
G. Accogli ◽  
F. Cremonesi ◽  
S. Desantis

Epithelial to mesenchymal transition (EMT) is the process by which epithelial cells dramatically alter their shape and motile behaviour as they differentiate into mesenchymal cells. The EMT and the reverse process, termed mesenchymal–epithelial transition, play central roles in embryogenesis. Gastrulation and neural crest formation are processes governed by EMT in amniotes. It is noteworthy that in placental mammals, the epithelial layer of amnion originates from the trophectoderm and it is continuous with the epiblast. On this basis, it is reasonable to speculate that some amniotic epithelial cells may escape the specification that accompanies gastrulation, and may retain some of the characteristics of epiblastic cells, such as pluripotency, behaving as stem cells that are able to preserve intrinsically the ability to transdifferentiate. Because it seems that malignant cells use the same mechanisms during the formation of tumours in vivo, the amniotic epithelial cells (AEC) could represent a good model to study in vitro this phenomenon that we observed to occur spontaneously in our culture conditions. The aim of this study was to characterise the glycoprotein pattern expressed in fresh or cryopreserved equine AEC, mesenchymal (AMC), and transdifferentiated cells by means of lectin histochemistry. AEC and AMC were cultured until passage (P) 3, while transdifferentiated cells at P1(EMT1) and P2 (EMT2). All cell lines were frozen for 1 month at –196°C in liquid nitrogen. The glycoanalysis was performed with a panel of twelve lectins to detect the glycans terminating with sialic acids (MAL II, SNA, PNA after sialidase digestion (K-s), K-s-DBA), galactose (PNA, RCA120, GSA I-B4,), N-acetylgalactosamine (DBA, HPA, SBA), N-acetylglucosamine (GSA II), fucose (UEA I, LTA), or with internal mannose (Con A). After freezing: 1) AEC exhibited decrease of binding sites for DBA, SBA, HPA, GSA II, and disappearance of GSA I-B4 and UEA I binders; 2) AMC displayed increase of SBA reactivity, decrease of K-s-PNA, HPA, GSA II staining, and absence of GSA I-B4 affinity; 3) EMT1 cells showed the appearance of K-s-DBA staining, the increase of K-s-PNA, RCA120, SBA, GSA I-B4, and UEA I reactivity, the decrease of MAL II, SNA, HPA, GSA II binders, and the disappearance of DBA and LTA binding sites; 4) EMT2 cells revealed the increase of K-s-PNA, GSA I-B4, UEA I affinity, the decrease of MAL II, SNA, RCA120, HPA, GSA II binders, and the lack of DBA, SBA, and LTA reactivity. In conclusion, this study demonstrates that the EMT induces changes in cell surface glycan profile of equine amniotic progenitor cells, and for the first time revealed that freezing modifies the lectin binding pattern of these cells. The observed glycan pattern modification may represent one aspect of the spontaneous complex process of EMT.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jingqiang Wang ◽  
Daisong Wang ◽  
Kun Chu ◽  
Wen Li ◽  
Yi Arial Zeng

Abstract Ovarian surface epithelium (OSE) undergoes recurring ovulatory rupture and repair. The OSE replenishing mechanism post ovulation remains unclear. Here we report that the expression of Protein C Receptor (Procr) marks a progenitor population in adult mice that is responsible for OSE repair post ovulation. Procr+  cells are the major cell source for OSE repair. The mechanism facilitating the rapid re-epithelialization is through the immediate expansion of Procr+  cells upon OSE rupture. Targeted ablation of Procr+  cells impedes the repairing process. Moreover, Procr+  cells displayed robust colony-formation capacity in culture, which we harnessed and established a long-term culture and expansion system of OSE cells. Finally, we show that Procr+  cells and previously reported Lgr5+ cells have distinct lineage tracing behavior in OSE homeostasis. Our study suggests that Procr marks progenitor cells that are critical for OSE ovulatory rupture and homeostasis, providing insight into how adult stem cells respond upon injury.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2198-2203 ◽  
Author(s):  
Liquan Gao ◽  
Ilaria Bellantuono ◽  
Annika Elsässer ◽  
Stephen B. Marley ◽  
Myrtle Y. Gordon ◽  
...  

Abstract Hematologic malignancies such as acute and chronic myeloid leukemia are characterized by the malignant transformation of immature CD34+ progenitor cells. Transformation is associated with elevated expression of the Wilm's tumor gene encoded transcription factor (WT1). Here we demonstrate that WT1 can serve as a target for cytotoxic T lymphocytes (CTL) with exquisite specificity for leukemic progenitor cells. HLA-A0201– restricted CTL specific for WT1 kill leukemia cell lines and inhibit colony formation by transformed CD34+ progenitor cells isolated from patients with chronic myeloid leukemia (CML), whereas colony formation by normal CD34+ progenitor cells is unaffected. Thus, the tissue-specific transcription factor WT1 is an ideal target for CTL-mediated purging of leukemic progenitor cells in vitro and for antigen-specific therapy of leukemia and other WT1-expressing malignancies in vivo.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Audrey Chabrat ◽  
Emmanuelle Lacassagne ◽  
Rodolphe Billiras ◽  
Sophie Landron ◽  
Amélie Pontisso-Mahout ◽  
...  

The discovery of novel drugs for neurodegenerative diseases has been a real challenge over the last decades. The development of patient- and/or disease-specific in vitro models represents a powerful strategy for the development and validation of lead candidates in preclinical settings. The implementation of a reliable platform modeling dopaminergic neurons will be an asset in the study of dopamine-associated pathologies such as Parkinson’s disease. Disease models based on cell reprogramming strategies, using either human-induced pluripotent stem cells or transcription factor-mediated transdifferentiation, are among the most investigated strategies. However, multipotent adult stem cells remain of high interest to devise direct conversion protocols and establish in vitro models that could bypass certain limitations associated with reprogramming strategies. Here, we report the development of a six-step chemically defined protocol that drives the transdifferentiation of human nasal olfactory stem cells into dopaminergic neurons. Morphological changes were progressively accompanied by modifications matching transcript and protein dopaminergic signatures such as LIM homeobox transcription factor 1 alpha (LMX1A), LMX1B, and tyrosine hydroxylase (TH) expression, within 42 days of differentiation. Phenotypic changes were confirmed by the production of dopamine from differentiated neurons. This new strategy paves the way to develop more disease-relevant models by establishing reprogramming-free patient-specific dopaminergic cell models for drug screening and/or target validation for neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document