Zinc pyrithione activates the volume-regulated anion channel through an antioxidant-sensitive mechanism

Author(s):  
Eric E. Figueroa ◽  
Jerod S. Denton

LRRC8 volume-regulated anion channels (VRACs) play important roles in diverse cell types and may represent therapeutic targets for diseases. To date, however, the pharmacological tools for evaluating the druggability of VRAC have been limited to inhibitors, as no activators of the channel have been reported. We performed a fluorescence-based high-throughput screen (HTS) of 1,184 FDA-approved drugs for compounds that increase VRAC activity. The most potent VRAC potentiator identified was zinc pyrithione (ZPT), which is used commercially for treating dandruff and other skin disorders. In intracellular YFP(F46L/H148Q/I152L)-quenching assays, ZPT potentiates the rate and extent of swelling-induced iodide influx dose-dependently with a half-maximal effective concentration (EC50) of 5.7 µM. Whole-cell voltage-clamp experiments revealed that co-application of hypotonic solution and 30 µM ZPT to HEK293 or HCT116 cells increases the rate of swelling-induced VRAC activation by approximately 10-fold. ZPT potentiates swelling-induced VRAC currents after currents have reached a steady state and activates currents in the absence of cell swelling. Neither ZnCl2 nor free pyrithione activated VRAC, however, treating cells with a mixture of ZnCl2 and pyrithione led to robust channel activation. Finally, the effects of ZPT on VRAC were inhibited by reactive oxygen species (ROS) scavenger NAC and NAD(P)H oxidase inhibitor DPI, suggesting the mechanism of action involves ROS generation. The discovery of ZPT as a potentiator/activator of VRAC demonstrates the utility of HTS for identifying small-molecule modulators of VRAC and adds to a growing repertoire of pharmacological tool compounds for probing the molecular physiology and regulation of this important channel.

2010 ◽  
Vol 298 (4) ◽  
pp. C900-C909 ◽  
Author(s):  
Hana Inoue ◽  
Nobuyuki Takahashi ◽  
Yasunobu Okada ◽  
Masato Konishi

The volume-sensitive outwardly rectifying (VSOR) chloride channel is ubiquitously expressed and involved in cell volume regulation after osmotic swelling, called regulatory volume decrease (RVD), in various cell types. In adipocytes, the expression of the VSOR channel has not been explored to date. Here, by employing the whole-cell patch-clamp technique, we examined whether or not the VSOR channel is expressed in white adipocytes freshly isolated from epididymal fat pads of normal (C57BL/6 or KK) and diabetic (KKAy) mice. Whole cell voltage-clamp recordings revealed that Cl− currents were gradually activated upon cell swelling induced by application of a hypotonic solution, both in normal and diabetic adipocytes. Although both the mean cell size (or cell capacitance) and the current magnitude in KKAy adipocytes were larger than those in C57BL/6 cells, the current density was significantly lower in KKAy adipocytes (23.32 ± 1.94 pA in C57BL/6 adipocytes vs. 13.04 ± 2.41 pA in KKAy adipocytes at +100 mV). Similarly, the current density in diabetic KKAy adipocytes was lower than that in adipocytes from KK mice (a parental strain of KKAy mice), which do not present diabetes until an older age. The current was inhibited by Cl− channel blockers, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and glibenclamide, or hypertonic solution, and showed outward rectification and inactivation kinetics at large positive potentials. These electrophysiological and pharmacological properties are consistent with those of the VSOR channel in other cell types. Moreover, adipocytes showed RVD, which was inhibited by NPPB. In KKAy adipocytes, RVD was significantly slower (τ; 8.42 min in C57BL/6 adipocytes vs. 11.97 min in KKAy adipocytes) and incomplete during the recording period (25 min). It is concluded that the VSOR channel is functionally expressed and involved in volume regulation in white adipocytes. RVD is largely impaired in adipocytes from diabetic mice, presumably as a consequence of the lower density of the functional VSOR channel in the plasma membrane.


2002 ◽  
Vol 283 (2) ◽  
pp. C569-C578 ◽  
Author(s):  
Alexander A. Mongin ◽  
Harold K. Kimelberg

Volume-dependent ATP release and subsequent activation of purinergic P2Y receptors have been implicated as an autocrine mechanism triggering activation of volume-regulated anion channels (VRACs) in hepatoma cells. In the brain ATP is released by both neurons and astrocytes and participates in intercellular communication. We explored whether ATP triggers or modulates the release of excitatory amino acid (EAAs) via VRACs in astrocytes in primary culture. Under basal conditions exogenous ATP (10 μM) activated a small EAA release in 70–80% of the cultures tested. In both moderately (5% reduction of medium osmolarity) and substantially (35% reduction of medium osmolarity) swollen astrocytes, exogenous ATP greatly potentiated EAA release. The effects of ATP were mimicked by P2Y agonists and eliminated by P2Y antagonists or the ATP scavenger apyrase. In contrast, the same pharmacological maneuvers did not inhibit volume-dependent EAA release in the absence of exogenous ATP, ruling out a requirement of autocrine ATP release for VRAC activation. The ATP effect in nonswollen and moderately swollen cells was eliminated by a 5–10% increase in medium osmolarity or by anion channel blockers but was insensitive to tetanus toxin pretreatment, further supporting VRAC involvement. Our data suggest that in astrocytes ATP does not trigger EAA release itself but acts synergistically with cell swelling. Moderate cell swelling and ATP may serve as two cooperative signals in bidirectional neuron-astrocyte communication in vivo.


2021 ◽  
Vol 22 (11) ◽  
pp. 6054
Author(s):  
Ioanna Kokkinopoulou ◽  
Paraskevi Moutsatsou

Mitochondria are membrane organelles present in almost all eukaryotic cells. In addition to their well-known role in energy production, mitochondria regulate central cellular processes, including calcium homeostasis, Reactive Oxygen Species (ROS) generation, cell death, thermogenesis, and biosynthesis of lipids, nucleic acids, and steroid hormones. Glucocorticoids (GCs) regulate the mitochondrially encoded oxidative phosphorylation gene expression and mitochondrial energy metabolism. The identification of Glucocorticoid Response Elements (GREs) in mitochondrial sequences and the detection of Glucocorticoid Receptor (GR) in mitochondria of different cell types gave support to hypothesis that mitochondrial GR directly regulates mitochondrial gene expression. Numerous studies have revealed changes in mitochondrial gene expression alongside with GR import/export in mitochondria, confirming the direct effects of GCs on mitochondrial genome. Further evidence has made clear that mitochondrial GR is involved in mitochondrial function and apoptosis-mediated processes, through interacting or altering the distribution of Bcl2 family members. Even though its exact translocation mechanisms remain unknown, data have shown that GR chaperones (Hsp70/90, Bag-1, FKBP51), the anti-apoptotic protein Bcl-2, the HDAC6- mediated deacetylation and the outer mitochondrial translocation complexes (Tom complexes) co-ordinate GR mitochondrial trafficking. A role of mitochondrial GR in stress and depression as well as in lung and hepatic inflammation has also been demonstrated.


2019 ◽  
Vol 400 (11) ◽  
pp. 1481-1496 ◽  
Author(s):  
Lingye Chen ◽  
Benjamin König ◽  
Tianbao Liu ◽  
Sumaira Pervaiz ◽  
Yasmin S. Razzaque ◽  
...  

Abstract The volume-regulated anion channel (VRAC) is a key player in the volume regulation of vertebrate cells. This ubiquitously expressed channel opens upon osmotic cell swelling and potentially other cues and releases chloride and organic osmolytes, which contributes to regulatory volume decrease (RVD). A plethora of studies have proposed a wide range of physiological roles for VRAC beyond volume regulation including cell proliferation, differentiation and migration, apoptosis, intercellular communication by direct release of signaling molecules and by supporting the exocytosis of insulin. VRAC was additionally implicated in pathological states such as cancer therapy resistance and excitotoxicity under ischemic conditions. Following extensive investigations, 5 years ago leucine-rich repeat-containing family 8 (LRRC8) heteromers containing LRRC8A were identified as the pore-forming components of VRAC. Since then, molecular biological approaches have allowed further insight into the biophysical properties and structure of VRAC. Heterologous expression, siRNA-mediated downregulation and genome editing in cells, as well as the use of animal models have enabled the assessment of the proposed physiological roles, together with the identification of new functions including spermatogenesis and the uptake of antibiotics and platinum-based cancer drugs. This review discusses the recent molecular biological insights into the physiology of VRAC in relation to its previously proposed roles.


2002 ◽  
Vol 282 (6) ◽  
pp. L1324-L1329 ◽  
Author(s):  
Andre Kulisz ◽  
Ningfang Chen ◽  
Navdeep S. Chandel ◽  
Zuohui Shao ◽  
Paul T. Schumacker

The p38 mitogen-activated protein kinase (MAPK) is phosphorylated in response to oxidative stress. Mitochondria in cardiomyocytes increase their generation of reactive oxygen species (ROS) during hypoxia (1–5% O2). These ROS participate in signal transduction pathways involved in adaptive responses, including ischemic preconditioning and gene transcription. The present study therefore tested the hypothesis that hypoxia induces p38 MAPK phosphorylation by augmenting mitochondrial ROS generation. In cardiomyocytes, phosphorylation of p38 was observed in a Po 2-dependent manner during hypoxia. This response was inhibited by rotenone, thenoyltrifluoroacetone, and myxothiazol, inhibitors of mitochondrial complexes I, II, and III, respectively. A similar inhibition was observed in the cells pretreated with anion channel inhibitor DIDS, which may block ROS release from mitochondria. During normoxia, increases in mitochondrial ROS elicited by azide (1–2 mM) or by the mitochondrial inhibitor antimycin A caused increased phosphorylation of p38. Brief treatment with exogenous H2O2 during normoxia also induced phosphorylation of p38 as hypoxia, but this effect was not abolished by myxothiazol or DIDS. The antioxidant N-acetyl-cysteine abolished the p38 response to hypoxia, presumably by scavenging H2O2, but the mitogen extracellular receptor kinase inhibitor PD-98059 did not inhibit p38 phosphorylation during hypoxia. Thus physiological hypoxia leads to p38 phosphorylation through a mechanism that requires electron flux in the proximal region of the mitochondrial electron transport chain, which suggests that either H2O2 or superoxide participates in activating that process.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Yu Chen ◽  
Jingang Cui ◽  
Qinbo Yang ◽  
Chenglin Jia ◽  
Minqi Xiong ◽  
...  

Myocardial fibrosis results from cardiac injuries caused by various pathophysiological mechanisms including myocardial infarction, leading to destruction of myocardial architecture and progressive cardiac dysfunction. Oxidative stress is likely involved in myocardial ischemic injury and the subsequent tissue remodeling mediated by myocardial fibrogenesis. Our current study aimed to evaluate the implication of NADPH oxidase in overproduction of reactive oxygen species and its contribution to the pathogenesis of myocardial fibrogenesis after ischemic injuries. The effects of Apocynin, a selective NADPH oxidase inhibitor, were evaluated in the mouse model of isoproterenol-induced myocardial injury by histopathological approaches and whole-genome gene expression profiling. The results demonstrated that Apocynin was able to inhibit the development of ISO-induced myocardial necrotic lesions and fibrogenesis in a dose-dependent manner. Moreover, the preventive effects of Apocynin on myocardial injuries were associated with suppressed expression of genes implicated in inflammation responses and extracellular matrix, which were remarkably upregulated by isoproterenol administration. In summary, o ur study provides proof-of-concept for the involvement of NADPH oxidase-mediated ROS generation in myocardial ischemic injuries and fibrogenesis, which will benefit the mechanism-based therapeutic development targeting NADPH oxidase and oxidative stress in treating myocardial fibrosis and related disorders.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Ablikim Abliz ◽  
Chen Chen ◽  
Wenhong Deng ◽  
Weixing Wang ◽  
Rongze Sun

PCBs, widespread endocrine disruptors, cause the disturbance of thyroid hormone (TH) homeostasis in humans and animals. However, the exact mechanism of thyroid dysfunction caused by PCBs is still unknown. In order to clarify the hypotheses that NADPH oxidase (NOX) and subsequent NF-κB pathway may play roles in thyroid dysfunction, sixty Sprague-Dawley rats were randomly divided into four groups: control group, PCB153 treated (PCB) group, received apocynin with PCB153 treatment (APO + PCB) group, and drug control (APO) group. Serum thyroid hormone levels were evaluated. The morphological change of thyroid tissue was analyzed under the light and transmission electron microscopy. NOX2, 8-OHdG, and NF-κB expression in the thyroid tissue was evaluated by immune-histochemical staining. Oxidative stress and inflammatory cytokines were detected. The following results were reduced after apocynin treatment: (1) serum thyroid hormone, (2) thyroid pathological injuries, (3) thyroid MDA, (4) thyroid ultrastructural change, (5) serum inflammatory cytokines, and (6) thyroid expression of NOX2, 8-OHdG, and NF-κB. These results suggested that NOX inhibition attenuates thyroid dysfunction induced by PCB in rats, presumably because of its role in preventing ROS generation and inhibiting the activation of NF-κB pathway. Our findings may provide new therapeutic targets for PCBs induced thyroid dysfunction.


1994 ◽  
Vol 267 (5) ◽  
pp. C1203-C1209 ◽  
Author(s):  
P. S. Jackson ◽  
R. Morrison ◽  
K. Strange

Efflux of intracellular organic osmolytes to the external medium is a ubiquitous response to cell swelling. Accumulating evidence indicates that volume regulatory loss of structurally unrelated organic osmolytes from cells is mediated by a relatively nonselective volume-sensitive anion channel. In C6 cells, we have termed this channel VSOAC for volume-sensitive organic osmolyte-anion channel. Swelling-induced activation of VSOAC required the presence of ATP or nonhydrolyzable ATP analogues [adenosine 5'-O-(3-thiotriphosphate), adenylylmethyl-enediphosphonate (AMP-PCP), or 5'-adenylylimidodiphosphate] in the patch pipette. Sustained activation of VSOAC also required ATP. Channel rundown was observed when cellular ATP levels were lowered by intracellular dialysis with the patch pipette solution. Rundown was prevented by the ATP analogue AMP-PCP. Passive swelling-induced myo-[3H]inositol and [3H]taurine efflux was blocked by metabolic inhibitors that decreased cellular ATP levels. Titration of cellular ATP levels with azide demonstrated that the apparent dissociation constant (Kd) for ATP of both myo-inositol and taurine efflux was approximately 1.7 mM. The high Kd for ATP indicates that cellular metabolic state plays an important role in modulating organic osmolyte loss. Regulation of VSOAC activity by ATP prevents depletion of metabolically expensive organic osmolytes when cellular energy production is reduced. In addition, ATP-dependent regulation provides essential feedback to minimize the loss of energy-producing carbon sources such as pyruvate, short-chain fatty acids, ketone bodies, and amino acids, which readily permeate this channel.


1996 ◽  
Vol 270 (4) ◽  
pp. C975-C989 ◽  
Author(s):  
J. L. Rae ◽  
M. A. Watsky

Single-channel patch-clamp techniques as well as standard and perforated-patch whole cell voltage-clamp techniques have been applied to the study of ionic channels in the corneal endothelium of several species. These studies have revealed two major K+ currents. One is due to an anion- and temperature-stimulated channel that is blocked by Cs+ but not by most other K+ channel blockers, and the other is similar to the family of A-currents found in excitable cells. The A-current is transient after a depolarizing voltage step and is blocked by both 4-aminopyridine and quinidine. These two currents are probably responsible for setting the -50 to -60 mV resting voltage reported for these cells. A Ca(2+)-activated ATP-inhibited nonselective cation channel and a tetrodotoxin-blocked Na+ channel are possible Na+ inflow pathways, but, given their gating properties, it is not certain that either channel works under physiological conditions. A large-conductance anion channel has also been identified by single-channel patch-clamp techniques. Single corneal endothelial cells have input resistances of 5-10 G omega and have steady-state K+ currents that are approximately 10 pA at the resting voltage. Pairs or monolayers of cells are electrically coupled and dye coupled through gap junctions.


Sign in / Sign up

Export Citation Format

Share Document