Mutagenesis of theN-glycosylation site of hNaSi-1 reduces transport activity

2003 ◽  
Vol 285 (5) ◽  
pp. C1188-C1196 ◽  
Author(s):  
Hongyan Li ◽  
Ana M. Pajor

The human Na+-sulfate cotransporter (hNaSi-1) belongs to the SLC13 gene family, which also includes the high-affinity Na+-sulfate cotransporter (hSUT-1) and the Na+-dicarboxylate cotransporters (NaDC). In this study, the location and functional role of the N-glycosylation site of hNaSi-1 were studied using antifusion protein antibodies. Polyclonal antibodies against a glutathione S-transferase fusion protein containing a 65-amino acid peptide of hNaSi-1 (GST-Si65) were raised in rabbits, purified, and then used in Western blotting and immunofluorescence experiments. The antibodies recognized native NaSi-1 proteins in pig and rat brush-border membrane vesicles as well as the recombinant proteins expressed in Xenopus oocytes. Wild-type hNaSi-1 and two N-glycosylation site mutant proteins, N591Y and N591A, were functionally expressed and studied in Xenopus oocytes. The apparent mass of N591Y was not affected by treatment with peptide- N-glycosylase F, in contrast to the mass of wild-type hNaSi-1, which was reduced by up to 15 kDa, indicating that Asn591is the N-glycosylation site. Although the cell surface abundance of the two glycosylation site mutants, N591Y and N591A, was greater than that of wild-type hNaSi-1, both mutants had greatly reduced Vmax, with no change in Km. These results suggest that Asn591and/or N-glycosylation is critical for transport activity in NaSi-1.

2001 ◽  
Vol 281 (4) ◽  
pp. G1034-G1043 ◽  
Author(s):  
Kousei Ito ◽  
Hiroshi Suzuki ◽  
Yuichi Sugiyama

Multidrug resistance-associated protein 3 (MRP3), unlike other MRPs, transports taurocholate (TC). The difference in TC transport activity between rat MRP2 and MRP3 was studied, focusing on the cationic amino acids in the transmembrane domains. For analysis, transport into membrane vesicles from Sf9 cells expressing wild-type and mutated MRP2 was examined. Substitution of Arg at position 586 with Leu and Ile and substitution of Arg at position 1096 with Lys, Leu, and Met resulted in the acquisition of TC transport activity, while retaining transport activity for glutathione and glucuronide conjugates. Substitution of Leu at position 1084 of rat MRP3 (which corresponds to Arg-1096 in rat MRP2) with Lys, but not with Val or Met, resulted in the loss of transport activity for TC and glucuronide conjugates. These results suggest that the presence of the cationic charge at Arg-586 and Arg-1096 in rat MRP2 prevents the transport of TC, whereas the presence of neutral amino acids at the corresponding position of rat MRP3 is required for the transport of substrates.


2005 ◽  
Vol 71 (2) ◽  
pp. 621-628 ◽  
Author(s):  
Zhi-Wei Chen ◽  
Cheng-Ying Jiang ◽  
Qunxin She ◽  
Shuang-Jiang Liu ◽  
Pei-Jin Zhou

ABSTRACT Analysis of known sulfur oxygenase-reductases (SORs) and the SOR-like sequences identified from public databases indicated that they all possess three cysteine residues within two conserved motifs (V-G-P-K-V-C31 and C101-X-X-C104; numbering according to the Acidianus tengchongensis numbering system). The thio-modifying reagent N-ethylmaleimide and Zn2+ strongly inhibited the activities of the SORs of A. tengchongensis, suggesting that cysteine residues are important. Site-directed mutagenesis was used to construct four mutant SORs with cysteines replaced by serine or alanine. The purified mutant proteins were investigated in parallel with the wild-type SOR. Replacement of any cysteine reduced SOR activity by 98.4 to 100%, indicating that all the cysteine residues are crucial to SOR activities. Circular-dichroism and fluorescence spectrum analyses revealed that the wild-type and mutant SORs have similar structures and that none of them form any disulfide bond. Thus, it is proposed that three cysteine residues, C31 and C101-X-X-C104, in the conserved domains constitute the putative binding and catalytic sites of SOR. Furthermore, enzymatic activity assays of the subcellular fractions and immune electron microscopy indicated that SOR is not only present in the cytoplasm but also associated with the cytoplasmic membrane of A. tengchongensis. The membrane-associated SOR activity was colocalized with the activities of sulfite:acceptor oxidoreductase and thiosulfate:acceptor oxidoreductase. We tentatively propose that these enzymes are located in close proximity on the membrane to catalyze sulfur oxidation in A. tengchongensis.


2004 ◽  
Vol 384 (3) ◽  
pp. 507-513 ◽  
Author(s):  
Salvador HERRERO ◽  
Joel GONZÁLEZ-CABRERA ◽  
Juan FERRÉ ◽  
Petra L. BAKKER ◽  
Ruud A. de MAAGD

Several mutants of the Bacillus thuringiensis Cry1Ca toxin affected with regard to specific activity towards Spodoptera exigua were studied. Alanine was used to replace single residues in loops 2 and 3 of domain II (mutant pPB19) and to replace residues 541–544 in domain III (mutant pPB20). Additionally, a Cry1Ca mutant combining all mutations was constructed (mutant pPB21). Toxicity assays showed a marked decrease in toxicity against S. exigua for all mutants, while they retained their activity against Manduca sexta, confirming the importance of these residues in determining insect specificity. Parameters for binding to the specific receptors in BBMV (brush border membrane vesicles) of S. exigua were determined for all toxins. Compared with Cry1Ca, the affinity of mutant pPB19 was slightly affected (2-fold lower), whereas the affinity of the mutants with an altered domain III (pPB20 and pPB21) was approx. 8-fold lower. Activation of Cry1Ca protoxin by incubation with S. exigua or M. sexta BBMV revealed the transient formation of an oligomeric form of Cry1Ca. The presence of this oligomeric form was tested in the activation of the different Cry1Ca mutants, and we found that those mutated in domain II (pPB19 and pPB21) could not generate the oligomeric form when activated by S. exigua BBMV. In contrast, when oligomerization was tested using BBMV prepared from M. sexta, all of the Cry1Ca mutants showed the formation of a similar oligomeric form as did the wild-type toxin. Our results show how modification of insect specificity can be achieved by manipulation of different parts of the toxin structure involved in different steps of the mode of action of B. thuringiensis toxins.


1990 ◽  
Vol 10 (12) ◽  
pp. 6257-6263
Author(s):  
A Frankel ◽  
P Welsh ◽  
J Richardson ◽  
J D Robertus

The gene for ricin toxin A chain was modified by site-specific mutagenesis to change arginine 180 to alanine, glutamine, methionine, lysine, or histidine. Separately, glutamic acid 177 was changed to alanine and glutamic acid 208 was changed to aspartic acid. Both the wild-type and mutant proteins were expressed in Escherichia coli and, when soluble, purified and tested quantitatively for enzyme activity. A positive charge at position 180 was found necessary for solubility of the protein and for enzyme activity. Similarly, a negative charge with a proper geometry in the vicinity of position 177 was critical for ricin toxin A chain catalysis. When glutamic acid 177 was converted to alanine, nearby glutamic acid 208 could largely substitute for it. This observation provided valuable structural information concerning the nature of second-site mutations.


1996 ◽  
Vol 271 (6) ◽  
pp. C1808-C1816 ◽  
Author(s):  
A. M. Pajor ◽  
N. Sun

Polyclonal antibodies were prepared against the rabbit renal Na(+)-dicarboxylate cotransporter, NaDC-1. The antibodies were raised in chickens against a fusion protein consisting of a 60-amino acid peptide from NaDC-1 and glutathione S-transferase. These antibodies specifically recognized the fusion protein in Western blots and could immunoprecipitate the full-length NaDC-1 after in vitro translation. The antifusion protein antibodies specifically recognized a protein of 63 kDa in rabbit renal brush-border membrane vesicles (BBMV), similar to the predicted mass of 66 kDa. Two proteins of 57 and 115 kDa were recognized in rabbit intestinal brush-border membranes. A protein of 66 kDa was recognized in Xenopus oocytes injected with NaDC-1 cRNA. Enzymatic deglycosylation of rabbit renal BBMV resulted in a decrease in mass by 11 kDa, consistent with N-glycosylation at a single site. Site-directed mutagenesis of the two consensus sequences for N-glycosylation in the NaDC-1 cDNA showed that Asn-576, located near the COOH-terminal, is glycosylated. The nonglycosylated mutant of NaDC-1 exhibited 50% of wild-type succinate transport activity when expressed in Xenopus oocytes, suggesting that glycosylation is not essential for function. The revised secondary structure model of NaDC-1 contains 11 putative transmembrane domains and an extracellular glycosylated COOH-terminal.


2002 ◽  
Vol 283 (2) ◽  
pp. E338-E345 ◽  
Author(s):  
Masatoshi Tsuru ◽  
Hideki Katagiri ◽  
Tomoichiro Asano ◽  
Tetsuya Yamada ◽  
Shigeo Ohno ◽  
...  

To elucidate the involvement of protein kinase C (PKC) isoforms in insulin-induced and phorbol ester-induced glucose transport, we expressed several PKC isoforms, conventional PKC-α, novel PKC-δ, and atypical PKC isoforms of PKC-λ and PKC-ζ, and their mutants in 3T3-L1 adipocytes using an adenovirus-mediated gene transduction system. Endogenous expression and the activities of PKC-α and PKC-λ/ζ, but not of PKC-δ, were detected in 3T3-L1 adipocytes. Overexpression of each wild-type PKC isoform induced a large amount of PKC activity in 3T3-L1 adipocytes. Phorbol 12-myristrate 13-acetate (PMA) activated PKC-α and exogenous PKC-δ but not atypical PKC-λ/ζ. Insulin also activated the overexpressed PKC-δ but not PKC-α. Expression of the wild-type PKC-α or PKC-δ resulted in significant increases in glucose transport activity in the basal and PMA-stimulated states. Dominant-negative PKC-α expression, which inhibited the PMA activation of PKC-α, decreased in PMA-stimulated glucose transport. Glucose transport activity in the insulin-stimulated state was increased by the expression of PKC-δ but not of PKC-α. These findings demonstrate that both conventional and novel PKC isoforms are involved in PMA-stimulated glucose transport and that other novel PKC isoforms could participate in PMA-stimulated and insulin-stimulated glucose transport. Atypical PKC-λ/ζ was not significantly activated by insulin, and expression of the wild-type, constitutively active, and dominant-negative mutants of atypical PKC did not affect either basal or insulin-stimulated glucose transport. Thus atypical PKC enzymes do not play a major role in insulin-stimulated glucose transport in 3T3-L1 adipocytes.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1549-1549
Author(s):  
Jorge P. Pinto ◽  
Pedro Ramos ◽  
Sergio de Almeida ◽  
Susana Oliveira ◽  
Laura Breda ◽  
...  

Abstract Studies done in non-hepatic cell lines, focusing on the interaction between HFE with TFR1 and β-2M proved insufficient to explain the discrepancies found in the clinical penetrance of hemochromatosis in subjects carrying the C282Y mutation. Our first goal was to investigate the role of HFE wild type (wt) and mutant proteins (C282Y and H63D) in a human hepatic cell line, focusing on the cellular localization and interaction of HFE with the expression of other iron related proteins. HFE mutant C282Y was found to be retained in the endoplasmic reticulum (ER). Thus, in addition, we investigated the effect of HFE wt and mutant proteins on Calreticulin, which is a chaperon protein that responds to ER stress and has a protective effect on oxidative damage in some cell lines. Here we report setting up a stable transfection of wt- and mutant-HFE in a hepatic cell line (HepG2) and examine the intracellular distribution of wt- and HFE mutants, their effect on iron intake independently of TFR1 and on the expression of other iron and ER stress response genes, namely Hepcidin and Calreticulin. In addition, we validated some of the novel effects of HFE on Calreticulin using peripheral blood mononuclear cells from HFE patients. The localization of the HFE variants was analyzed using KDEL and Golgin-97 as ER and the Golgi complex markers, respectively. HFE C282Y shows a high degree of overlap with the ER markers, confirming a retention of this variant in this organelle. Over-expression of the HFE wt impaired the intake of 55Fe relatively to transfected control cells (P<0.008) independently of TFR1, as demonstrated by RNAi silencing. Hamp RNA expression was decreased in cells over expressing C282Y in comparison to HFE wt cells (P<0.011). Finally over-expression of HFE wt decreases Calreticulin mRNA, whereas the C282Y had an opposite effect, compared to the control cell line. A similar result was observed in peripheral blood mononuclear cells (PMBC) of C282Y homozygous HFE patients, compared to wild type blood donors (P<0.006). Interestingly, this data suggest that synthesis of the HFE mutant C282Y triggers a protective effect on oxidative damage mediated by Calreticulin. In fact, HepG2 cells over-expressing C282Y showed lower levels of ROS than HFE wt (P<0.004). This observation might contribute to explain some of the discrepancies seen in the clinical penetrance of the disease in C282Y carrying subjects. The direct effect of the mutant HFE C282Y on mRNA expression of hepcidin also demonstrated here for the first time corroborates and provides a molecular basis for earlier reports of low hepcidin levels in HH patients and in Hfe-KO mice.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Catarina Raposo ◽  
Ana Karolina de Santana Nunes ◽  
Rayana Leal de Almeida Luna ◽  
Shyrlene Meiry da Rocha Araújo ◽  
Maria Alice da Cruz-Höfling ◽  
...  

We recently demonstrated that sildenafil reduces the expression of cytokines, COX-2, and GFAP in a demyelinating model induced in wild-type (WT) mice. Herein, the understandings of the neuroprotective effect of sildenafil and the mediation of iNOS/NO system on inflammatory demyelination induced by cuprizone were investigated. The cerebella of iNOS−/−mice were examined after four weeks of treatment with cuprizone alone or combined with sildenafil. Cuprizone increased GFAP, Iba-1, TNF-α, COX-2, IL-1β, and IFN-γexpression, decreased expression of glutathione S-transferase pi (GSTpi), and damaged myelin in iNOS−/−mice. Sildenafil reduced Iba-1, IFN-γ, and IL-1βlevels but had no effect on the expression of GFAP, TNF-α, and COX-2 compared to the cuprizone group. Sildenafil elevated GSTpi levels and improved the myelin structure/ultrastructure. iNOS−/−mice suffered from severe inflammation following treatment with cuprizone, while WT mice had milder inflammation, as found in the previous study. It is possible that inflammatory regulation through iNOS-feedback is absent in iNOS−/−mice, making them more susceptible to inflammation. Sildenafil has at least a partial anti-inflammatory effect through iNOS inhibition, as its effect on iNOS−/−mice was limited. Further studies are required to explain the underlying mechanism of the sildenafil effects.


1992 ◽  
Vol 12 (12) ◽  
pp. 5485-5498 ◽  
Author(s):  
T F Unger ◽  
R E Steele

We have examined the effects of Xenopus pp60c-src with constitutive kinase activity on the morphology and maturation of Xenopus laevis oocytes. When RNA encoding this deregulated variant was injected into stage VI oocytes, we observed a gross alteration in the cortex of the oocyte. This alteration involved aggregation of pigment and invagination of the cortex in a large area proximal to the site of injection. This phenomenon was not seen in oocytes injected with RNA encoding wild-type pp60c-src. We have correlated this phenomenon with the tyrosine phosphorylation of 84- and 100-kDa proteins. These phosphorylated proteins colocalized with the alteration in the oocyte cortex when assayed by both biochemical and immunocytochemical methods. Neither the pigment aggregation nor phosphorylation of the 84- and 100-kDa proteins was observed in oocytes expressing a nonmyristoylated version of the deregulated pp60c-src. Expression of deregulated Xenopus fyn, a src-family member, resulted in a phenotype similar to that seen with deregulated src. However, in the fyn-injected oocytes, many more proteins were phosphorylated on tyrosine than in the src-injected oocytes. Progesterone stimulation of oocytes expressing deregulated pp60c-src resulted in an increase in the number of tyrosine-phosphorylated proteins. This change may represent the response of pp60src to the resumption of the cell cycle in maturing oocytes. These data suggest that the oocyte may be a particularly useful system for investigating the role of pp60c-src in the regulation of cytoskeletal structure and in the regulation of events associated with the cell cycle.


2002 ◽  
Vol 76 (9) ◽  
pp. 4199-4211 ◽  
Author(s):  
Miriam I. Quiñones-Kochs ◽  
Linda Buonocore ◽  
John K. Rose

ABSTRACT The envelope (Env) glycoprotein of human immunodeficiency virus (HIV) contains 24 N-glycosylation sites covering much of the protein surface. It has been proposed that one role of these carbohydrates is to form a shield that protects the virus from immune recognition. Strong evidence for such a role for glycosylation has been reported for simian immunodeficiency virus (SIV) mutants lacking glycans in the V1 region of Env (J. N. Reitter, R. E. Means, and R. C. Desrosiers, Nat. Med. 4:679-684, 1998). Here we used recombinant vesicular stomatitis viruses (VSVs) expressing HIV Env glycosylation mutants to determine if removal of carbohydrates in the V1 and V2 domains affected protein function and the generation of neutralizing antibodies in mice. Mutations that eliminated one to six of the sites for N-linked glycosylation in the V1 and V2 loops were introduced into a gene encoding the HIV type 1 primary isolate 89.6 envelope glycoprotein with its cytoplasmic domain replaced by that of the VSV G glycoprotein. The membrane fusion activities of the mutant proteins were studied in a syncytium induction assay. The transport and processing of the mutant proteins were studied with recombinant VSVs expressing mutant Env G proteins. We found that HIV Env V1 and V2 glycosylation mutants were no better than wild-type envelope at inducing antibodies neutralizing wild-type Env, although an Env mutant lacking glycans appeared somewhat more sensitive to neutralization by antibodies raised to mutant or wild-type Env. These results indicate significant differences between SIV and HIV with regard to the roles of glycans in the V1 and V2 domains.


Sign in / Sign up

Export Citation Format

Share Document