M-cadherin transcription in satellite cells from normal and denervated muscle

2004 ◽  
Vol 286 (3) ◽  
pp. C708-C712 ◽  
Author(s):  
Annette Maier ◽  
Antje Bornemann

Satellite cells (SC) in adult muscle are quiescent in the G0 phase of the cell cycle. In the present study we determined whether SC after denervation upregulate M-cadherin, an adhesion molecule that is upregulated with differentiation and fusion. We also monitored primary cultures of SC from denervated muscle for expression of the transcription factors of the MyoD family to determine whether SC from denervated muscle can be activated in vitro. Hindlimb muscles of rats were denervated under anesthesia, and rats were killed after 2-28 days. The SC of the denervated limbs were pooled and either assessed for M-cadherin mRNA by using real-time RT-PCR or cultured in vitro. The cultures were processed for RT-PCR or immunofluorescence for expression of the transcription factors of the MyoD family. Hindlimb muscles of M-cadherin knockout mice were denervated under anesthesia, mice were killed after 2-28 days, and cells were stained for β-galactosidase activity by X-gal histochemistry. In vitro, primary SC cultures from rat muscle denervated for 2-28 days expressed transcripts of myf5, MyoD, myogenin, and MRF4 as SC from normal innervated muscle. In vivo, M-cadherin transcription was not upregulated in SC from denervated rat muscle when compared with normal muscle. Moreover, β-galactosidase activity was not detected in denervated mouse muscle. The finding that SC do not upregulate M-cadherin after denervation supports the notion that they remain in the G0 phase of the cell cycle in vivo. However, the cells retain the capacity to pass through the proliferative and differentiative program when robustly stimulated to do so in vitro.

Planta Medica ◽  
2018 ◽  
Vol 84 (11) ◽  
pp. 786-794
Author(s):  
Weiyun Chai ◽  
Lu Chen ◽  
Xiao-Yuan Lian ◽  
Zhizhen Zhang

AbstractTripolinolate A as a new bioactive phenolic ester was previously isolated from a halophyte of Tripolium pannonicum. However, the in vitro and in vivo anti-glioma effects and mechanism of tripolinolate A have not been investigated. This study has demonstrated that (1) tripolinolate A inhibited the proliferation of different glioma cells with IC50 values of 7.97 to 14.02 µM and had a significant inhibitory effect on the glioma growth in U87MG xenograft nude mice, (2) tripolinolate A induced apoptosis in glioma cells by downregulating the expressions of antiapoptotic proteins and arrested glioma cell cycle at the G2/M phase by reducing the expression levels of cell cycle regulators, and (3) tripolinolate A also remarkably reduced the expression levels of several glioma metabolic enzymes and transcription factors. All data together suggested that tripolinolate A had significant in vitro and in vivo anti-glioma effects and the regulation of multiple tumor-related regulators and transcription factors might be responsible for the activities of tripolinolate A against glioma.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 83
Author(s):  
Mohamed S. Nafie ◽  
Ahmed I. Khodair ◽  
Hebat Allah Y. Hassan ◽  
Noha M. Abd El-Fadeal ◽  
Hanin A. Bogari ◽  
...  

Background: Hepatocellular carcinoma (HCC) is one of the most widespread malignancies and is reported as the fourth most prevalent cause of cancer deaths worldwide. Therefore, we aimed to investigate the probable mechanistic cytotoxic effect of the promising 2-thioxoimidazolidin-4-one derivative on liver cancer cells using in vitro and in vivo approaches. The compounds were tested for the in vitro cytotoxic activity using MTT assay, and the promising compound was tested in colony forming unit assay, flow cytometric analysis, RT-PCR, Western blotting, in vivo using SEC-carcinoma and in silico to highlight the virtual mechanism of action. Both compounds 4 and 2 performed cytotoxic effects against HepG2 cells with IC50 values of 0.017 and 0.18 μM, respectively, compared to Staurosporine and 5-Fu as reference drugs with IC50 values of 5.07 and 5.18 µM, respectively. Compound 4 treatment revealed apoptosis induction by 19.35-fold (11.42% compared to 0.59% in control), arresting the cell cycle at G2/M phase. Moreover, studying gene expression that plays critical roles in cell cycle and apoptosis by RT-PCR demonstrated that compound 4 enhances the expression of the pro-apoptotic genes p53, PUMA, and Caspase 3, 8, and 9, and impedes the anti-apoptotic Bcl-2 gene in the HepG2 cells. It can also inhibit the PI3K/AKT pathway at both gene and protein levels, which was reinforced by the in silico predictions of the molecular docking simulations towards the PI3K/AKT proteins. Finally, in vivo study verified that compound 4 has a promising anti-cancer activity through activating antioxidant levels (CAT, SOD and GSH) and ameliorating hematological, biochemical, and histopathological findings.


2015 ◽  
Vol 27 (1) ◽  
pp. 257
Author(s):  
S. G. Petkov ◽  
W. A. Kues ◽  
H. Niemann

Epigenetic silencing of the transgenes has been considered a prerequisite for complete reprogramming of mouse somatic cells to induced pluripotent stem cells (miPSC). Here, we examined the activity status of the reprogramming transcription factors in miPSC produced with Sleeping Beauty (SB) transposon vectors carrying expression cassettes with the porcine OCT4, SOX2, c-MYC, and KLF4 (pOSMK) under the control of doxycycline (DOX)-inducible (TetO) or constitutive (CAG) promoters. Mouse embryo fibroblasts (MEF) were electroporated with SB-TetO-rTA-SV40pA-TetO-pOSMK-IRES-tdTomato-bGHpA (TetO group) or with SB-loxP-CAG-pOSMK-IRES-tdTomato-SV40pA-loxP (CAG group) together with SB100x (SB transposase). The cells were cultured on mitotically inactivated MEF feeders with DMEM supplemented with 20% knockout serum replacement, 2 mM l-glutamine, penicillin-streptomycin, nonessential amino acids, 0.1 mM 2-mercaptoethanol, 1000 U mL–1 of ESGRO, and 5 µg mL–1 of DOX. The miPSC colonies were individually picked, disaggregated to single cells, and propagated further under the same culture conditions. Three cell lines from each experimental group were examined for pluripotency characteristics, and the activity of the transgenes was monitored by the presence of tdTomato fluorescence and by RT-PCR. The miPSC produced with TetO vector silenced the transgene expression within 11 days post-transfection (in the presence of DOX) and upregulated the endogenous pluripotency genes Oct4, Sox2, Nanog, Rex1, and Utf1. These cells showed typical miPSC morphology and ability to differentiate into cells from the 3 primary germ layers in vitro and in vivo (teratomas). At the same time, the miPSC from the CAG group did not silence the transgenes even after 20 passages of continuous propagation, although they upregulated the endogenous pluripotency genes similarly to the TetO group. Moreover, these cells also showed ability to differentiate in vitro into cells from the 3 germ layers (contracting cardiac myocytes, neurons, epithelia) expressing differentiation markers Afp, Sox17, Gata4, Gata6, cardiac troponin, nestin, and PGP 9.5. Following Cre-mediated excision of the reprogramming cassette, the miPSC from the CAG group continued to self-renew and the expression of pluripotency markers Oct4, Sox2, Nanog, and Rex1 did not change significantly, as evidenced by real-time RT PCR (all P > 0.1), showing that these cells were not dependent on the transgenes for maintaining their pluripotency characteristics. Currently, we are investigating the ability of the miPSC from the CAG group to differentiate in vivo by producing teratomas and chimeras. The results from our preliminary investigations suggest that porcine transcription factors can be used for production of miPSC and that the silencing of the reprogramming transcription factors in miPSC is promoter-dependent, but may not be absolutely necessary for complete reprogramming to pluripotency.


2006 ◽  
Vol 174 (2) ◽  
pp. 245-253 ◽  
Author(s):  
Yosuke Nagata ◽  
Terence A. Partridge ◽  
Ryoichi Matsuda ◽  
Peter S. Zammit

Adult skeletal muscle is able to repeatedly regenerate because of the presence of satellite cells, a population of stem cells resident beneath the basal lamina that surrounds each myofiber. Little is known, however, of the signaling pathways involved in the activation of satellite cells from quiescence to proliferation, a crucial step in muscle regeneration. We show that sphingosine-1-phosphate induces satellite cells to enter the cell cycle. Indeed, inhibiting the sphingolipid-signaling cascade that generates sphingosine-1-phosphate significantly reduces the number of satellite cells able to proliferate in response to mitogen stimulation in vitro and perturbs muscle regeneration in vivo. In addition, metabolism of sphingomyelin located in the inner leaflet of the plasma membrane is probably the main source of sphingosine-1-phosphate used to mediate the mitogenic signal. Together, our observations show that sphingolipid signaling is involved in the induction of proliferation in an adult stem cell and a key component of muscle regeneration.


1996 ◽  
Vol 16 (4) ◽  
pp. 1659-1667 ◽  
Author(s):  
J Karlseder ◽  
H Rotheneder ◽  
E Wintersberger

Within the region around 150 bp upstream of the initiation codon, which was previously shown to suffice for growth-regulated expression, the murine thymidine kinase gene carries a single binding site for transcription factor Sp1; about 10 bp downstream of this site, there is a binding motif for transcription factor E2F. The latter protein appears to be responsible for growth regulation of the promoter. Mutational inactivation of either the Sp1 or the E2F site almost completely abolishes promoter activity, suggesting that the two transcription factors interact directly in delivering an activation signal to the basic transcription machinery. This was verified by demonstrating with the use of glutathione S-transferase fusion proteins that E2F and Sp1 bind to each other in vitro. For this interaction, the C-terminal part of Sp1 and the N terminus of E2F1, a domain also present in E2F2 and E2F3 but absent in E2F4 and E2F5, were essential. Accordingly, E2F1 to E2F3 but not E2F4 and E2F5 were found to bind sp1 in vitro. Coimmunoprecipitation experiments showed that complexes exist in vivo, and it was estabilished that the distance between the binding sites for the two transcription factors was critical for optimal promoter activity. Finally, in vivo footprinting experiments indicated that both the sp1 and E2F binding sites are occupied throughout the cell cycle. Mutation of either binding motif abolished binding of both transcription factors in vivo, which may indicate cooperative binding of the two proteins to chromatin-organized DNA. Our data are in line with the hypothesis that E2F functions as a growth- and cell cycle regulated tethering factor between Sp1 and the basic transcription machinery.


2019 ◽  
Vol 19 (3) ◽  
pp. 365-374 ◽  
Author(s):  
Yang Liu ◽  
Jingyin Zhang ◽  
Shuyun Feng ◽  
Tingli Zhao ◽  
Zhengzheng Li ◽  
...  

Objective: The aim of this study is to investigate the inhibitory effect of camptothecin derivative 3j on Non-Small Cell Lung Cancer (NSCLCs) cells and the potential anti-tumor mechanisms. Background: Camptothecin compounds are considered as the third largest natural drugs which are widely investigated in the world and they suffered restriction because of serious toxicity, such as hemorrhagic cystitis and bone marrow suppression. Methods: Using cell proliferation assay and S180 tumor mice model, a series of 20(S)-O-substituted benzoyl 7- ethylcamptothecin compounds were screened and evaluated the antitumor activities in vitro and in vivo. Camptothecin derivative 3j was selected for further study using flow cytometry in NSCLCs cells. Cell cycle related protein cyclin A2, CDK2, cyclin D and cyclin E were detected by Western Blot. Then, computer molecular docking was used to confirm the interaction between 3j and Topo I. Also, DNA relaxation assay and alkaline comet assay were used to investigate the mechanism of 3j on DNA damage. Results: Our results demonstrated that camptothecin derivative 3j showed a greater antitumor effect in eleven 20(S)-O-substituted benzoyl 7-ethylcamptothecin compounds in vitro and in vivo. The IC50 of 3j was 1.54± 0.41 µM lower than irinotecan with an IC50 of 13.86±0.80 µM in NCI-H460 cell, which was reduced by 8 fold. In NCI-H1975 cell, the IC50 of 3j was 1.87±0.23 µM lower than irinotecan (IC50±SD, 5.35±0.38 µM), dropped by 1.8 fold. Flow cytometry analysis revealed that 3j induced significant accumulation in a dose-dependent manner. After 24h of 3j (10 µM) treatment, the percentage of NCI-H460 cell in S-phase significantly increased (to 93.54 ± 4.4%) compared with control cells (31.67 ± 3.4%). Similarly, the percentage of NCI-H1975 cell in Sphase significantly increased (to 83.99 ± 2.4%) compared with control cells (34.45 ± 3.9%) after treatment with 10µM of 3j. Moreover, increased levels of cyclin A2, CDK2, and decreased levels of cyclin D, cyclin E further confirmed that cell cycle arrest was induced by 3j. Furthermore, molecular docking studies suggested that 3j interacted with Topo I-DNA and DNA-relaxation assay simultaneously confirmed that 3j suppressed the activity of Topo I. Research on the mechanism showed that 3j exhibited anti-tumour activity via activating the DNA damage response pathway and suppressing the repair pathway in NSCLC cells. Conclusion: Novel camptothecin derivative 3j has been demonstrated as a promising antitumor agent and remains to be assessed in further studies.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


1998 ◽  
Vol 26 (5) ◽  
pp. 629-634
Author(s):  
Emiliana Falcone ◽  
Edoardo Vignolo ◽  
Livia Di Trani ◽  
Simona Puzelli ◽  
Maria Tollis

A reverse transcriptase polymerase chain reaction (RT-PCR) assay specific for identifying avian infectious bronchitis virus (IBV) in poultry vaccines, and the serological response to IBV induced by the inoculation of chicks with a Newcastle disease vaccine spiked with the Massachusetts strain of IBV, were compared for their ability to detect IBV as a contaminant of avian vaccines. The sensitivity of the IBV-RT-PCR assay provided results which were at least equivalent to the biological effect produced by the inoculation of chicks, allowing this assay to be considered a valid alternative to animal testing in the quality control of avian immunologicals. This procedure can easily be adapted to detect a number of contaminants for which the in vivo test still represents the only available method of detection.


Sign in / Sign up

Export Citation Format

Share Document