scholarly journals WNKs are potassium-sensitive kinases

Author(s):  
John M. Pleinis ◽  
Logan Norrell ◽  
Radha Akella ◽  
John M. Humphreys ◽  
Haixia He ◽  
...  

WNK (With No Lysine (K)) kinases regulate epithelial ion transport in the kidney to maintain homeostasis of electrolyte concentrations and blood pressure. Chloride ion directly binds WNK kinases to inhibit autophosphorylation and activation. Changes in extracellular potassium are thought to regulate WNKs through changes in intracellular chloride. Prior studies demonstrate that in some distal nephron epithelial cells, intracellular potassium changes with chronic low or high potassium diet. We therefore investigated whether potassium regulates WNK activity independent of chloride. We found decreased activity of Drosophila WNK and mammalian WNK3 and WNK4 in fly Malpighian (renal) tubules bathed in high extracellular potassium, even when intracellular chloride was kept constant at either ~13 mM or 26 mM. High extracellular potassium also inhibited chloride-insensitive mutants of WNK3 and WNK4. High extracellular rubidium was also inhibitory and increased tubule rubidium. The Na+/K+-ATPase inhibitor, ouabain, which is expected to lower intracellular potassium, increased tubule Drosophila WNK activity. In vitro, potassium increased the melting temperature of Drosophila WNK, WNK1 and WNK3 kinase domains, indicating ion binding to the kinase. Potassium inhibited in vitro autophosphorylation of Drosophila WNK and WNK3, and also inhibited WNK3 and WNK4 phosphorylation of their substrate, SPAK (Ste20-related proline/alanine-rich kinase). The greatest sensitivity of WNK4 to potassium occurred in the range of 80 to 180 mM, encompassing physiological intracellular potassium concentrations. Together, these data indicate chloride-independent potassium inhibition of Drosophila and mammalian WNK kinases through direct effects of potassium ion on the kinase.

2018 ◽  
Vol 38 (1) ◽  
Author(s):  
Naohiro Nomura ◽  
Wakana Shoda ◽  
Yuanlong Wang ◽  
Shintaro Mandai ◽  
Taisuke Furusho ◽  
...  

The sodium chloride cotransporter (NCC) has been identified as a key molecule regulating potassium balance. The mechanisms of NCC regulation during low extracellular potassium concentrations have been studied in vitro. These studies have shown that hyperpolarization increased chloride efflux, leading to the activation of chloride-sensitive with-no-lysine kinase (WNK) kinases and their downstream molecules, including STE20/SPS1-related proline/alanine-rich kinase (SPAK) and NCC. However, this mechanism was not studied in vivo. Previously, we developed the barttin hypomorphic mouse (Bsndneo/neo mice), expressing very low levels of barttin and ClC-K channels, because barttin is an essential β-subunit of ClC-K. In contrast with Bsnd−/− mice, Bsndneo/neo mice survived to adulthood. In Bsndneo/neo mice, SPAK and NCC activation after consuming a low-potassium diet was clearly impaired compared with that in wild-type (WT) mice. In ex vivo kidney slice experiment, the increase in pNCC and SPAK in low-potassium medium was also impaired in Bsndneo/neo mice. Furthermore, increased blood pressure was observed in WT mice fed a high-salt and low-potassium diet, which was not evident in Bsndneo/neo mice. Thus, our study provides in vivo evidence that, in response to a low-potassium diet, ClC-K and barttin play important roles in the activation of the WNK4-SPAK-NCC cascade and blood pressure regulation.


2019 ◽  
Vol 116 (10) ◽  
pp. 4502-4507 ◽  
Author(s):  
Jen-Chi Chen ◽  
Yi-Fen Lo ◽  
Ya-Wen Lin ◽  
Shih-Hua Lin ◽  
Chou-Long Huang ◽  
...  

With-no-lysine (WNK) kinases regulate renal sodium-chloride cotransporter (NCC) to maintain body sodium and potassium homeostasis. Gain-of-function mutations of WNK1 and WNK4 in humans lead to a Mendelian hypertensive and hyperkalemic disease pseudohypoaldosteronism type II (PHAII). X-ray crystal structure and in vitro studies reveal chloride ion (Cl−) binds to a hydrophobic pocket within the kinase domain of WNKs to inhibit its activity. The mechanism is thought to be important for physiological regulation of NCC by extracellular potassium. To test the hypothesis that WNK4 senses the intracellular concentration of Cl−physiologically, we generated knockin mice carrying Cl−-insensitive mutant WNK4. These mice displayed hypertension, hyperkalemia, hyperactive NCC, and other features fully recapitulating human and mouse models of PHAII caused by gain-of-function WNK4. Lowering plasma potassium levels by dietary potassium restriction increased NCC activity in wild-type, but not in knockin, mice. NCC activity in knockin mice can be further enhanced by the administration of norepinephrine, a known activator of NCC. Raising plasma potassium by oral gavage of potassium inactivated NCC within 1 hour in wild-type mice, but had no effect in knockin mice. The results provide compelling support for the notion that WNK4 is a bona fide physiological intracellular Cl−sensor and that Cl−regulation of WNK4 underlies the mechanism of regulation of NCC by extracellular potassium.


2018 ◽  
Vol 29 (5) ◽  
pp. 1449-1461 ◽  
Author(s):  
Qifei Sun ◽  
Yipin Wu ◽  
Sima Jonusaite ◽  
John M. Pleinis ◽  
John M. Humphreys ◽  
...  

Background With No Lysine kinase (WNK) signaling regulates mammalian renal epithelial ion transport to maintain electrolyte and BP homeostasis. Our previous studies showed a conserved role for WNK in the regulation of transepithelial ion transport in the Drosophila Malpighian tubule.Methods Using in vitro assays and transgenic Drosophila lines, we examined two potential WNK regulators, chloride ion and the scaffold protein mouse protein 25 (Mo25), in the stimulation of transepithelial ion flux.ResultsIn vitro, autophosphorylation of purified Drosophila WNK decreased as chloride concentration increased. In conditions in which tubule intracellular chloride concentration decreased from 30 to 15 mM as measured using a transgenic sensor, Drosophila WNK activity acutely increased. Drosophila WNK activity in tubules also increased or decreased when bath potassium concentration decreased or increased, respectively. However, a mutation that reduces chloride sensitivity of Drosophila WNK failed to alter transepithelial ion transport in 30 mM chloride. We, therefore, examined a role for Mo25. In in vitro kinase assays, Drosophila Mo25 enhanced the activity of the Drosophila WNK downstream kinase Fray, the fly homolog of mammalian Ste20-related proline/alanine-rich kinase (SPAK), and oxidative stress-responsive 1 protein (OSR1). Knockdown of Drosophila Mo25 in the Malpighian tubule decreased transepithelial ion flux under stimulated but not basal conditions. Finally, whereas overexpression of wild-type Drosophila WNK, with or without Drosophila Mo25, did not affect transepithelial ion transport, Drosophila Mo25 overexpressed with chloride-insensitive Drosophila WNK increased ion flux.Conclusions Cooperative interactions between chloride and Mo25 regulate WNK signaling in a transporting renal epithelium.


Rheumatology ◽  
2021 ◽  
Vol 60 (Supplement_1) ◽  
Author(s):  
Christopher Wasson ◽  
Rebecca Ross ◽  
Ruth Morton ◽  
Jamel Mankouri ◽  
Francesco Del Galdo

Abstract Background/Aims  The intracellular chloride ion channel CLIC4 mediates the activation of cancer associated fibroblasts. Interestingly, systemic sclerosis (SSc) fibroblasts display a number of similar properties to cancer associated fibroblasts. Tissue fibrosis in SSc is driven by active fibroblasts (myofibroblasts). Therefore in this study we investigated the role of CLIC4 in SSc fibroblast activation. Methods  Dermal fibroblasts were obtained from full thickness skin biopsies from SSc patients (early-diffuse). RNA and protein were collected from the fibroblasts and CLIC4 transcript and protein levels were assessed by qPCR and western blot. SSc patient fibroblasts were treated with the chloride ion channel inhibitors NPPB and IAA-94. Results  CLIC4 was found to be expressed at significantly higher levels in SSc patients fibroblasts compared to healthy controls, at both the transcript (3.7 fold) and protein (1.7 fold) levels. Inhibition of the TGF-β signalling pathway led to reduced CLIC4 expression in SSc fibroblasts, confirming this pathway as the main driver of CLIC4 expression. Finally, treatment of SSc fibroblasts with small molecule inhibitors that target the channel led to reduced expression of the myofibroblast markers collagen type 1 and alpha-smooth muscle actin, suggesting a direct role for CLIC4 in SSc associated skin fibrosis. Conclusion  We have identified a novel role for CLIC4 in SSc myofibroblast activation, which further strengthen the similarities between SSc fibroblasts and cancer associated fibroblasts. Furthermore this study highlights this channel as a novel target for therapeutic intervention. Disclosure  C. Wasson: None. R. Ross: None. R. Morton: None. J. Mankouri: None. F. Del Galdo: None.


2010 ◽  
Vol 298 (5) ◽  
pp. E1058-E1071 ◽  
Author(s):  
Wenyan Niu ◽  
Philip J. Bilan ◽  
Shuhei Ishikura ◽  
Jonathan D. Schertzer ◽  
Ariel Contreras-Ferrat ◽  
...  

Muscle contraction stimulates glucose uptake acutely to increase energy supply, but suitable cellular models that faithfully reproduce this complex phenomenon are lacking. To this end, we have developed a cellular model of contracting C2C12 myotubes overexpressing GLUT4 with an exofacial myc-epitope tag (GLUT4 myc) and explored stimulation of GLUT4 traffic by physiologically relevant agents. Carbachol (an acetylcholine receptor agonist) induced a gain in cell surface GLUT4 myc that was mediated by nicotinic acetylcholine receptors. Carbachol also activated AMPK, and this response was sensitive to the contractile myosin ATPase inhibitor N-benzyl- p-toluenesulfonamide. The gain in surface GLUT4 myc elicited by carbachol or by the AMPK activator 5-amino-4-carboxamide-1 β-ribose was sensitive to chemical inhibition of AMPK activity by compound C and partially reduced by siRNA-mediated knockdown of AMPK catalytic subunits or LKB1. In addition, the carbachol-induced gain in cell surface GLUT4 myc was partially sensitive to chelation of intracellular calcium with BAPTA-AM. However, the carbachol-induced gain in cell surface GLUT4 myc was not sensitive to the CaMKK inhibitor STO-609 despite expression of both isoforms of this enzyme and a rise in cytosolic calcium by carbachol. Therefore, separate AMPK- and calcium-dependent signals contribute to mobilizing GLUT4 in response to carbachol, providing an in vitro cell model that recapitulates the two major signals whereby acute contraction regulates glucose uptake in skeletal muscle. This system will be ideal to further analyze the underlying molecular events of contraction-regulated GLUT4 traffic.


1972 ◽  
Vol 36 (5) ◽  
pp. 569-583 ◽  
Author(s):  
J. Stovall King ◽  
Don L. Jewett ◽  
Howard R. Sundberg

✓ A possible mechanism by which intrathecal infusion of partially frozen saline might relieve patients of chronic pain has been studied by applying hypertonic saline to the dorsal rootlets of cats in vitro. The supernatant of partially thawed normal saline was found to be hypertonic. Persistent block of C fibers, detected by a collision method, occurred after the rootlets had been exposed to saline from 500 to 2500 mOsm/L for 15 min followed by 15 min of isotonic saline. Few of the A fibers were blocked by this procedure, but both A and C fibers were blocked when solutions of 3500 mOsm/L were used. Differential blockage of C fibers could also be produced with hypotonic saline and with distilled water. Localized cooling, to 2°C for 25 min, had no persistent effect on C fiber conduction, and when cooling was combined with hypertonic saline there was no potentiation of the differential blockade caused by the saline. Hypertonic solutions of sucrose or sodium nitrate produced no persistent differential block; most A and C fibers recovered. However, choline chloride was as effective as sodium chloride in giving a differential blockade. It seems that chloride ion plays a major role in establishing the persistent C fiber blockade observed when dorsal rootlets are exposed to hypertonic saline.


2018 ◽  
Vol 315 (4) ◽  
pp. F903-F907 ◽  
Author(s):  
Aylin R. Rodan

WNK [with no lysine (K)] kinases regulate renal epithelial ion transport to maintain homeostasis of electrolyte concentrations, extracellular volume, and blood pressure. The SLC12 cation-chloride cotransporters, including the sodium-potassium-2-chloride (NKCC) and sodium chloride cotransporters (NCC), are targets of WNK regulation via the intermediary kinases SPAK (Ste20-related proline/alanine-rich kinase) and OSR1 (oxidative stress response). The pathway is activated by low dietary potassium intake, resulting in increased phosphorylation and activity of NCC. Chloride regulates WNK kinases in vitro by binding to the active site and inhibiting autophosphorylation and has been proposed to modulate WNK activity in the distal convoluted tubule in response to low dietary potassium. WNK-SPAK/OSR1 regulation of NKCC-dependent ion transport is evolutionarily ancient, and it occurs in the Drosophila Malpighian (renal) tubule. Here, we review recent studies from the Drosophila tubule demonstrating cooperative roles for chloride and the scaffold protein Mo25 (mouse protein-25, also known as calcium-binding protein-39) in the regulation of WNK-SPAK/OSR1 signaling in a transporting renal epithelium. Insights gained from this genetically manipulable and physiologically accessible epithelium shed light on molecular mechanisms of regulation of the WNK-SPAK/OSR1 pathway, which is important in human health and disease.


1976 ◽  
Vol 51 (s3) ◽  
pp. 315s-317s
Author(s):  
W. R. Adam ◽  
J. W. Funder

1. The renal response to aldosterone (urinary sodium and potassium excretion) was determined in adrenalectomized rats previously fed either a high potassium diet or a control diet. High K+ rats showed an enhanced response to aldosterone at all doses tested. 2. This enhanced response to aldosterone required the presence of the adrenal glands during the induction period, could be suppressed by a high sodium intake, but could not be induced by a low sodium diet. 3. No difference between high K+ and control rats could be detected in renal mineralocorticoid receptors, assessed by both in vivo and in vitro binding of tritiated aldosterone. 4. The method of the induction, and the mechanism of the enhanced response, remain to be defined.


1999 ◽  
Vol 277 (2) ◽  
pp. G257-G261 ◽  
Author(s):  
Andre J. Ouellette

The hypothesis that epithelial cells release preformed antibiotic peptides as components of mucosal innate immunity has gained experimental support in recent years. In the mammalian small intestine, Paneth cells secrete granules that are rich in α-defensins and additional antimicrobial peptides into the lumen of the crypt. The α-defensins are homologues of peptides that function as mediators of nonoxidative microbial cell killing in phagocytic leukocytes, and they are potent microbicidal agents in in vitro assays. Because certain mouse α-defensins stimulate cultured epithelial cells to secrete chloride ion, those peptides appear to be capable of interacting directly with the apical membranes of neighboring cells and perhaps influencing crypt physiology. In instances of crypt disruption or induced Paneth cell deficiency, crypt intermediate cells appear to compensate by accumulating and secreting Paneth cell antimicrobial peptides. Challenges for the future will be to understand the mechanisms of this epithelial plasticity and to show that Paneth cells contribute directly to innate immunity in the crypt microenvironment.


Sign in / Sign up

Export Citation Format

Share Document