ATR/TEM8 is highly expressed in epithelial cells liningBacillus anthracis’three sites of entry: implications for the pathogenesis of anthrax infection

2005 ◽  
Vol 288 (6) ◽  
pp. C1402-C1410 ◽  
Author(s):  
Gloria Bonuccelli ◽  
Federica Sotgia ◽  
Philippe G. Frank ◽  
Terence M. Williams ◽  
Cecilia J. de Almeida ◽  
...  

Anthrax is a disease caused by infection with spores from the bacteria Bacillus anthracis. These spores enter the body, where they germinate into bacteria and secrete a tripartite toxin that causes local edema and, in systemic infections, death. Recent studies identified the cellular receptor for anthrax toxin (ATR), a type I membrane protein. ATR is one of the splice variants of the tumor endothelial marker 8 (TEM8) gene. ATR and TEM8 are identical throughout their extracellular and transmembrane sequence, and both proteins function as receptors for the toxin. ATR/TEM8 function and expression have been associated with development of the vascular system and with tumor angiogenesis. TEM8 is selectively upregulated in endothelial cells during blood vessel formation and tumorigenesis. However, selective expression of TEM8 in endothelial cells contradicts the presumably ubiquitous expression of the receptor. To resolve this controversial issue, we evaluated the distribution of ATR/TEM8 in a variety of tissues. For this purpose, we generated and characterized a novel anti-ATR/TEM8 polyclonal antibody. Here, we show that this novel antibody recognizes all three ATR/TEM8 isoforms, which are widely and differentially expressed in various tissue types. We found that ATR/TEM8 expression is not only associated with tumor endothelial cells, as previously described. Indeed, ATR/TEM8 is highly and selectively expressed in the epithelial cells lining those organs that constitute the anthrax toxin's sites of entry, i.e., the lung, the skin, and the intestine. In fact, we show that ATR/TEM8 is highly expressed in the respiratory epithelium of the bronchi of the lung and is particularly abundant in the ciliated epithelial cells coating the bronchi. Furthermore, immunostaining of skin biopsies revealed that ATR/TEM8 is highly expressed in the keratinocytes of the epidermis. Finally, we show that the epithelial cells lining the small intestine strongly express ATR/TEM8 isoforms. This is the first demonstration that the ATR/TEM8 protein is highly expressed in epithelial cells, which represent the primary location for bacterial invasion. These results suggest that the ATR/TEM8 expression pattern that we describe here is highly relevant for understanding the pathogenesis of anthrax infection.

1995 ◽  
Vol 269 (1) ◽  
pp. L127-L135 ◽  
Author(s):  
W. W. Barton ◽  
S. Wilcoxen ◽  
P. J. Christensen ◽  
R. Paine

Intercellular adhesion molecule-1 (ICAM-1) is expressed at high levels on type I alveolar epithelial cells in the normal lung and is induced in vitro as type II cells spread in primary culture. In contrast, in most nonhematopoetic cells ICAM-1 expression is induced in response to inflammatory cytokines. We have formed the hypothesis that the signals that control ICAM-1 expression in alveolar epithelial cells are fundamentally different from those controlling expression in most other cells. To test this hypothesis, we have investigated the influence of inflammatory cytokines on ICAM-1 expression in isolated type II cells that have spread in culture and compared this response to that of rat pulmonary artery endothelial cells (RPAEC). ICAM-1 protein, determined both by a cell-based enzyme-linked immunosorbent assay and by Western blot analysis, and mRNA were minimally expressed in unstimulated RPAEC but were significantly induced in a time- and dose-dependent manner by treatment with tumor necrosis factor-alpha, interleukin-1 beta, or interferon-gamma. In contrast, these cytokines did not influence the constitutive high level ICAM-1 protein expression in alveolar epithelial cells and only minimally affected steady-state mRNA levels. ICAM-1 mRNA half-life, measured in the presence of actinomycin D, was relatively long at 7 h in alveolar epithelial cells and 4 h in RPAEC. The striking lack of response of ICAM-1 expression by alveolar epithelial cells to inflammatory cytokines is in contrast to virtually all other epithelial cells studied to date and supports the hypothesis that ICAM-1 expression by these cells is a function of cellular differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 76 (3) ◽  
pp. 1002-1010 ◽  
Author(s):  
P. J. Fracica ◽  
S. P. Caminiti ◽  
C. A. Piantadosi ◽  
F. G. Duhaylongsod ◽  
J. D. Crapo ◽  
...  

Diffuse lung injury is accompanied by low compliance and hypoxemia with histological evidence of endothelial and alveolar epithelial cell disruption. The histological effects of treatment of an acute diffuse lung injury with a natural surfactant product were evaluated in a primate model because surfactant function and content have been shown to be abnormal in diffuse lung injury in both animals and humans. Ten baboons were ventilated with 100% O2 for 96 h, and 5 were given an aerosol of natural porcine surfactant. Physiological and biochemical measurements of the effects of hyperoxia and surfactant treatment are presented in a companion paper. After O2 exposure, lungs were fixed and processed for quantitative electron microscopy. The responses to O2 included epithelial and endothelial cell injuries, interstitial edema, and inflammation. The hyperoxic animals treated with surfactant were compared with the untreated animals; the treatments altered neutrophil distribution, fibroblast proliferation, and changes in the volumes of type I epithelial cells and endothelial cells. Surfactant-treated animals also had decreased lamellar body volume density in type II epithelial cells and preservation of endothelial cell integrity. These changes suggest complex effects of natural surfactant on the pulmonary response to hyperoxia, including protection against epithelial and endothelial cell destruction as well as significant interstitial inflammation and fibroblast proliferation. We conclude that natural surfactant treatment of hyperoxic lung injury in primates resulted in partial protection of epithelial and endothelial cells but also increased the accumulation of fibroblasts in the lung.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Jillian M. Carr ◽  
Liam M. Ashander ◽  
Julie K. Calvert ◽  
Yuefang Ma ◽  
Amanda Aloia ◽  
...  

Recent clinical reports indicate that infection with dengue virus (DENV) commonly has ocular manifestations. The most serious threat to vision is dengue retinopathy, including retinal vasculopathy and macular edema. Mechanisms of retinopathy are unstudied, but observations in patients implicate retinal pigment epithelial cells and retinal endothelial cells. Human retinal cells were inoculated with DENV-2 and monitored for up to 72 hours. Epithelial and endothelial cells supported DENV replication and release, but epithelial cells alone demonstrated clear cytopathic effect, and infection was more productive in those cells. Infection induced type I interferon responses from both cells, but this was stronger in epithelial cells. Endothelial cells increased expression of adhesion molecules, with sustained overexpression of vascular adhesion molecule-1. Transcellular impedance decreased for epithelial monolayers, but not endothelial monolayers, coinciding with cytopathic effect. This reduction was accompanied by disorganization of intracellular filamentous-actin and decreased expression of junctional molecules, zonula occludens 1, and catenin-β1. Changes in endothelial expression of adhesion molecules are consistent with the retinal vasculopathy seen in patients infected with DENV; decreases in epithelial junctional protein expression, paralleling loss of integrity of the epithelium, provide a molecular basis for DENV-associated macular edema. These molecular processes present potential therapeutic targets for vision-threatening dengue retinopathy.


2014 ◽  
Vol 306 (8) ◽  
pp. C768-C778 ◽  
Author(s):  
Abdul Q. Sheikh ◽  
Courtney Kuesel ◽  
Toloo Taghian ◽  
Jennifer R. Hurley ◽  
Wei Huang ◽  
...  

Diabetes-induced cardiomyopathy is characterized by cardiac remodeling, fibrosis, and endothelial dysfunction, with no treatment options currently available. Hyperglycemic memory by endothelial cells may play the key role in microvascular complications in diabetes, providing a potential target for therapeutic approaches. This study tested the hypothesis that a proangiogenic environment can augment diabetes-induced deficiencies in endothelial cell angiogenic and biomechanical responses. Endothelial responses were quantified for two models of diabetic conditions: 1) an in vitro acute and chronic hyperglycemia where normal cardiac endothelial cells were exposed to high-glucose media, and 2) an in vivo chronic diabetes model where the cells were isolated from rats with type I streptozotocin-induced diabetes. Capillary morphogenesis, VEGF and nitric oxide expression, cell morphology, orientation, proliferation, and apoptosis were determined for cells cultured on Matrigel or proangiogenic nanofiber hydrogel. The effects of biomechanical stimulation were assessed following cell exposure to uniaxial strain. The results demonstrate that diabetes alters cardiac endothelium angiogenic response, with differential effects of acute and chronic exposure to high-glucose conditions, consistent with the concept that endothelial cells may have a long-term “hyperglycemic memory” of the physiological environment in the body. Furthermore, endothelial cell exposure to strain significantly diminishes their angiogenic potential following strain application. Both diabetes and strain-associated deficiencies can be augmented in the proangiogenic nanofiber microenvironment. These findings may contribute to the development of novel approaches to reverse hyperglycemic memory of endothelium and enhance vascularization of the diabetic heart, where improved angiogenic and biomechanical responses can be the key factor to successful therapy.


1956 ◽  
Vol 103 (1) ◽  
pp. 127-144 ◽  
Author(s):  
John T. Ellis

Intravascular precipitates, comprised at least in part of iron, formed regularly in rabbits given one or more injections of a saccharated iron oxide preparation intravenously, and these lodged in numerous capillaries throughout the body, particularly those of the lungs and kidneys. Large numbers of the brownish precipitates remained in the capillaries of the renal glomeruli during the first few days following injection of the iron, but most of them disappeared after 5 to 7 days, with only moderate amounts of brown pigment remaining in the endothelial cells of the renal glomeruli. Signs of acute injury of the glomerular tufts—namely) pyknosis of some of the endothelial cells, margination of leukocytes within the glomerular capillaries, and slight proliferation of the epithelial cells—also developed some 5 to 7 days following injection of the iron, along with marked proteinuria, which proved transitory if no further injections were given. When the iron preparation was given repeatedly over prolonged intervals, however, the proteinuria persisted and became extreme, and hypoproteinemia developed, often with hypercholesterolemia and transitory edema as well. Histological studies of the kidneys of rabbits manifesting the nephrotic syndrome, as just described, disclosed that virtually all the renal glomeruli were greatly altered, mainly owing to proliferation of the epithelial cells, together with some fibrosis and atrophy. Some of the rabbits having marked proteinuria and other functional changes eventually developed azotemia following repeated injections of the iron, and several of them lost weight and died; the renal glomeruli of these animals showed changes like those just described, but the alterations were more extensive. Considered together, the findings provide evidence that the intravascular precipitates first occluded the glomerular capillaries for a period of several days following injection of the iron and then largely disappeared from them just prior to the development of morphologic signs of glomerular injury and proteinuria. Hence the possibility was considered that the intracapillary precipitates might have produced acute injury to the walls of the glomerular capllaries through the agency of anoxia. But it is plain that the findings of the present study do not disclose the essential nature of the anatomical change responsible for the proteinuria, or the means whereby this was produced. The findings as a whole were briefly considered in relation to the pathogenesis of the nephrotic syndrome as it occurs naturally in human beings.


Blood ◽  
2016 ◽  
Vol 128 (9) ◽  
pp. 1169-1173 ◽  
Author(s):  
John D. Welsh ◽  
Mark L. Kahn ◽  
Daniel T. Sweet

Abstract Aside from the established role for platelets in regulating hemostasis and thrombosis, recent research has revealed a discrete role for platelets in the separation of the blood and lymphatic vascular systems. Platelets are activated by interaction with lymphatic endothelial cells at the lymphovenous junction, the site in the body where the lymphatic system drains into the blood vascular system, resulting in a platelet plug that, with the lymphovenous valve, prevents blood from entering the lymphatic circulation. This process, known as “lymphovenous hemostasis,” is mediated by activation of platelet CLEC-2 receptors by the transmembrane ligand podoplanin expressed by lymphatic endothelial cells. Lymphovenous hemostasis is required for normal lymph flow, and mice deficient in lymphovenous hemostasis exhibit lymphedema and sometimes chylothorax phenotypes indicative of lymphatic insufficiency. Unexpectedly, the loss of lymph flow in these mice causes defects in maturation of collecting lymphatic vessels and lymphatic valve formation, uncovering an important role for fluid flow in driving endothelial cell signaling during development of collecting lymphatics. This article summarizes the current understanding of lymphovenous hemostasis and its effect on lymphatic vessel maturation and synthesizes the outstanding questions in the field, with relationship to human disease.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2712
Author(s):  
Jan K. Hennigs ◽  
Christiane Matuszcak ◽  
Martin Trepel ◽  
Jakob Körbelin

Forming the inner layer of the vascular system, endothelial cells (ECs) facilitate a multitude of crucial physiological processes throughout the body. Vascular ECs enable the vessel wall passage of nutrients and diffusion of oxygen from the blood into adjacent cellular structures. ECs regulate vascular tone and blood coagulation as well as adhesion and transmigration of circulating cells. The multitude of EC functions is reflected by tremendous cellular diversity. Vascular ECs can form extremely tight barriers, thereby restricting the passage of xenobiotics or immune cell invasion, whereas, in other organ systems, the endothelial layer is fenestrated (e.g., glomeruli in the kidney), or discontinuous (e.g., liver sinusoids) and less dense to allow for rapid molecular exchange. ECs not only differ between organs or vascular systems, they also change along the vascular tree and specialized subpopulations of ECs can be found within the capillaries of a single organ. Molecular tools that enable selective vascular targeting are helpful to experimentally dissect the role of distinct EC populations, to improve molecular imaging and pave the way for novel treatment options for vascular diseases. This review provides an overview of endothelial diversity and highlights the most successful methods for selective targeting of distinct EC subpopulations.


Development ◽  
1988 ◽  
Vol 103 (1) ◽  
pp. 27-36 ◽  
Author(s):  
M. Hayashi ◽  
Y. Ninomiya ◽  
K. Hayashi ◽  
T.F. Linsenmayer ◽  
B.R. Olsen ◽  
...  

Cells involved in the synthesis of collagen types I and II in the cornea of developing chick embryos have been studied by using in situ hybridization and immunohistochemistry. Corneas processed for in situ hybridization with the type I and II collagen probes demonstrated specific mRNAs in the epithelium of embryos at stage 18 with an increase at stages between 26 and 31, and then gradual decrease to the background level in the next several days. In the endothelium, a small amount of specific mRNA was recognized through these stages. In the stroma, only sections hybridized with the type I probe demonstrated mRNA in fibroblasts. Immunostaining demonstrated specific collagen types in the stroma at sites which were closely associated with cells containing specific mRNAs. Both collagens type I and II were present beneath the epithelium as narrow bands at stage 18; as the thicker primary stroma at stages 20 and 26; and as subepithelial, subendothelial and stromal staining at stage 31. Thereafter, type I collagen was increased in the stroma but it was also noted in the subepithelial and, to a lesser degree, subendothelial regions, whereas type II collagen was gradually confined to the subendothelial matrix. Electron microscopic examination of sections from 5-day-old (stage-27) embryo corneas using antibodies against the carboxyl propeptides of type I and II procollagens revealed the presence of these procollagens within the cisternae of the endoplasmic reticulum and Golgi vesicles in both epithelial and endothelial cells. In the epithelial cells both the periderm and basal cells contained these procollagens within the cytoplasmic organelles. These results indicate that not only the epithelial cells, but also the endothelial cells secrete collagen types I and II during the formation of the primary corneal stroma and for several days after invasion of fibroblasts.


1986 ◽  
Vol 102 (6) ◽  
pp. 2302-2309 ◽  
Author(s):  
M Hayashi ◽  
Y Ninomiya ◽  
J Parsons ◽  
K Hayashi ◽  
B R Olsen ◽  
...  

We have employed a highly specific in situ hybridization protocol that allows differential detection of mRNAs of collagen types I and II in paraffin sections from chick embryo tissues. All probes were cDNA restriction fragments encoding portions of the C-propeptide region of the pro alpha-chain, and some of the fragments also encoded the 3'-untranslated region of mRNAs of either type I or type II collagen. Smears of tendon fibroblasts and those of sternal chondrocytes from 17-d-old chick embryos as well as paraffin sections of 10-d-old whole embryos and of the cornea of 6.5-d-old embryos were hybridized with 3H-labeled probes for either type I or type II collagen mRNA. Autoradiographs revealed that the labeling was prominent in tendon fibroblasts with the type I collagen probe and in sternal chondrocytes with the type II collagen probe; that in the cartilage of sclera and limbs from 10-d-old embryos, the type I probe showed strong labeling of fibroblast sheets surrounding the cartilage and of a few chondrocytes in the cartilage, whereas the type II probe labeled chondrocytes intensely and only a few fibroblasts; and that in the cornea of 6.5-d-old embryos, the type I probe labeled the epithelial cells and fibroblasts in the stroma heavily, and the endothelial cells slightly, whereas the type II probe labeled almost exclusively the epithelial cells except for a slight labeling in the endothelial cells. These data indicate that embryonic tissues express these two collagen genes separately and/or simultaneously and offer new approaches to the study of the cellular regulation of extracellular matrix components.


2020 ◽  
Vol 11 ◽  
Author(s):  
Megan L. Stanifer ◽  
Cuncai Guo ◽  
Patricio Doldan ◽  
Steeve Boulant

Interferons (IFNs) constitute the first line of defense against microbial infections particularly against viruses. They provide antiviral properties to cells by inducing the expression of hundreds of genes known as interferon-stimulated genes (ISGs). The two most important IFNs that can be produced by virtually all cells in the body during intrinsic innate immune response belong to two distinct families: the type I and type III IFNs. The type I IFN receptor is ubiquitously expressed whereas the type III IFN receptor’s expression is limited to epithelial cells and a subset of immune cells. While originally considered to be redundant, type III IFNs have now been shown to play a unique role in protecting mucosal surfaces against pathogen challenges. The mucosal specific functions of type III IFN do not solely rely on the restricted epithelial expression of its receptor but also on the distinct means by which type III IFN mediates its anti-pathogen functions compared to the type I IFN. In this review we first provide a general overview on IFNs and present the similarities and differences in the signal transduction pathways leading to the expression of either type I or type III IFNs. By highlighting the current state-of-knowledge of the two archetypical mucosal surfaces (e.g. the respiratory and intestinal epitheliums), we present the differences in the signaling cascades used by type I and type III IFNs to uniquely induce the expression of ISGs. We then discuss in detail the role of each IFN in controlling pathogen infections in intestinal and respiratory epithelial cells. Finally, we provide our perspective on novel concepts in the field of IFN (stochasticity, response heterogeneity, cellular polarization/differentiation and tissue microenvironment) that we believe have implications in driving the differences between type I and III IFNs and could explain the preferences for type III IFNs at mucosal surfaces.


Sign in / Sign up

Export Citation Format

Share Document