Irisin exerts dual effects on browning and adipogenesis of human white adipocytes

2016 ◽  
Vol 311 (2) ◽  
pp. E530-E541 ◽  
Author(s):  
Yuan Zhang ◽  
Chao Xie ◽  
Hai Wang ◽  
Robin M. Foss ◽  
Morgan Clare ◽  
...  

To better understand the role of irisin in humans, we examined the effects of irisin in human primary adipocytes and fresh human subcutaneous white adipose tissue (scWAT). Human primary adipocytes derived from 28 female donors' fresh scWAT were used to examine the effects of irisin on browning and mitochondrial respiration, and preadipocytes were used to examine the effects of irisin on adipogenesis and osteogenesis. Cultured fragments of scWAT and perirenal brown fat were used for investigating signal transduction pathways that mediate irisin's browning effect by Western blotting to detect phosphorylated forms of p38, ERK, and STAT3 as well as uncoupling protein 1 (UCP1). Individual responses to irisin in scWAT were correlated with basal expression levels of brown/beige genes. Irisin upregulated the expression of browning-associated genes and UCP1 protein in both cultured primary mature adipocytes and fresh adipose tissues. It also significantly increased thermogenesis at 5 nmol/l by elevating cellular energy metabolism (OCR and ECAR). Treating human scWAT with irisin increased UCP1 expression by activating the ERK and p38 MAPK signaling. Blocking either pathway with specific inhibitors abolished irisin-induced UCP1 upregulation. However, our results showed that UCP1 in human perirenal adipose tissue was insensitive to irisin. Basal levels of brown/beige and FNDC5 genes correlated positively with the browning response of scWAT to irisin. In addition, irisin significantly inhibited adipogenic differentiation but promoted osteogenic differentiation. We conclude that irisin promotes “browning” of mature white adipocytes by increasing cellular thermogenesis, whereas it inhibits adipogenesis and promotes osteogenesis during lineage-specific differentiation. Our findings provide a rationale for further exploring the therapeutic use of irisin in obesity and exercise-associated bone formation.

Author(s):  
Tammy Ying ◽  
Thea N. Golden ◽  
Lan Cheng ◽  
Jeff Ishibashi ◽  
Patrick Seale ◽  
...  

The cytokine interleukin 4 (IL-4) can increase beige adipogenesis in adult rodents. However, neonatal animals use a distinct adipocyte precursor compartment for adipogenesis compared to adults. In this study, we address whether IL-4 can induce persistent effects on adipose tissue when administered subcutaneously in the interscapular region during the neonatal period in Sprague Dawley rats. We injected IL-4 into neonatal male rats during postnatal days 1-6, followed by analysis of adipose tissue and adipocyte precursors at 2 weeks and 10 weeks of age. Adipocyte precursors were cultured and subjected to differentiation in vitro. We found that a short and transient IL-4 exposure in neonates upregulated uncoupling protein 1 (Ucp1) mRNA expression and decreased fat cell size in subcutaneous white adipose tissue (WAT). Adipocyte precursors from mature rats that had been treated with IL-4 as neonates displayed a decrease in adiponectin (Adipoq) but no change in Ucp1 expression, as compared to controls. Thus, neonatal IL-4 induces acute beige adipogenesis and decreases adipogenic differentiation capacity long term. Overall, these findings indicate that the neonatal period is critical for adipocyte development and may influence the later onset of obesity.


PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e84910 ◽  
Author(s):  
Jakob G. Knudsen ◽  
Maria Murholm ◽  
Andrew L. Carey ◽  
Rasmus S. Biensø ◽  
Astrid L. Basse ◽  
...  

2020 ◽  
Vol 245 (1) ◽  
pp. 65-78
Author(s):  
Koichiro Taguchi ◽  
Kazuo Kajita ◽  
Yoshihiko Kitada ◽  
Masayuki Fuwa ◽  
Motochika Asano ◽  
...  

Despite extensive investigation, the mechanisms underlying adipogenesis are not fully understood. We previously identified proliferative cells in adipose tissue expressing adipocyte-specific genes, which were named small proliferative adipocytes (SPA). In this study, we investigated the characteristics and roles of SPA in adipose tissue. Epididymal and inguinal fat was digested by collagenase, and then SPA were separated by centrifugation from stromal vascular cells (SVC) and mature white adipocytes. To clarify the feature of gene expression in SPA, microarray and real-time PCR were performed. The expression of adipocyte-specific genes and several neuronal genes was increased in the order of SVC < SPA < mature white adipocytes. In addition, proliferin was detected only in SPA. SPA differentiated more effectively into lipid-laden cells than SVC. Moreover, differentiated SPA expressed uncoupling protein 1 and mitochondria-related genes more than differentiated SVC. Treatment of SPA with pioglitazone and CL316243, a specific β3-adrenergic receptor agonist, differentiated SPA into beige-like cells. Therefore, SPA are able to differentiate into beige cells. SPA isolated from epididymal fat (epididymal SPA), but not SPA from inguinal fat (inguinal SPA), expressed a marker of visceral adipocyte precursor, WT1. However, no significant differences were detected in the expression levels of adipocyte-specific genes or neuronal genes between epididymal and inguinal SPA. The ability to differentiate into lipid-laden cells in epididymal SPA was a little superior to that in inguinal SPA, whereas the ability to differentiate into beige-like cells was greater in inguinal SPA than epididymal SPA. In conclusion, SPA may be progenitors of beige cells.


2020 ◽  
Vol 134 (5) ◽  
pp. 473-512 ◽  
Author(s):  
Ryan P. Ceddia ◽  
Sheila Collins

Abstract With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand–receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein–coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.


2020 ◽  
Vol 295 (51) ◽  
pp. 17535-17548
Author(s):  
Xanthe A. M. H. van Dierendonck ◽  
Tiphaine Sancerni ◽  
Marie-Clotilde Alves-Guerra ◽  
Rinke Stienstra

The development of a chronic, low-grade inflammation originating from adipose tissue in obese subjects is widely recognized to induce insulin resistance, leading to the development of type 2 diabetes. The adipose tissue microenvironment drives specific metabolic reprogramming of adipose tissue macrophages, contributing to the induction of tissue inflammation. Uncoupling protein 2 (UCP2), a mitochondrial anion carrier, is thought to separately modulate inflammatory and metabolic processes in macrophages and is up-regulated in macrophages in the context of obesity and diabetes. Here, we investigate the role of UCP2 in macrophage activation in the context of obesity-induced adipose tissue inflammation and insulin resistance. Using a myeloid-specific knockout of UCP2 (Ucp2ΔLysM), we found that UCP2 deficiency significantly increases glycolysis and oxidative respiration, both unstimulated and after inflammatory conditions. Strikingly, fatty acid loading abolished the metabolic differences between Ucp2ΔLysM macrophages and their floxed controls. Furthermore, Ucp2ΔLysM macrophages show attenuated pro-inflammatory responses toward Toll-like receptor-2 and -4 stimulation. To test the relevance of macrophage-specific Ucp2 deletion in vivo, Ucp2ΔLysM and Ucp2fl/fl mice were rendered obese and insulin resistant through high-fat feeding. Although no differences in adipose tissue inflammation or insulin resistance was found between the two genotypes, adipose tissue macrophages isolated from diet-induced obese Ucp2ΔLysM mice showed decreased TNFα secretion after ex vivo lipopolysaccharide stimulation compared with their Ucp2fl/fl littermates. Together, these results demonstrate that although UCP2 regulates both metabolism and the inflammatory response of macrophages, its activity is not crucial in shaping macrophage activation in the adipose tissue during obesity-induced insulin resistance.


2018 ◽  
Vol 48 (1) ◽  
pp. 397-408 ◽  
Author(s):  
Ingrid  Felicidade ◽  
Daniele Sartori ◽  
Susan L.M. Coort ◽  
Simone Cristine Semprebon ◽  
Andressa Megumi Niwa ◽  
...  

Background/Aims: Compared with non-obese individuals, obese individuals commonly store more vitamin D in adipose tissue. VDR expression in adipose tissue can influence adipogenesis and is therefore a target pathway deserving further study. This study aims to assess the role of 1,25(OH)2D3 in human preadipocyte proliferation and differentiation. Methods: RTCA, MTT, and trypan blue assays were used to assess the effects of 1,25(OH)2D3 on the viability, proliferation, and adipogenic differentiation of SGBS cells. Cell cycle and apoptosis analyses were performed with flow cytometry, triglycerides were quantified, and RT-qPCR was used to assess gene expression. Results: We confirmed that the SGBS cell model is suitable for studying adipogenesis and demonstrated that the differentiation protocol induces cell maturation, thereby increasing the lipid content of cells independently of treatment. 1,25(OH)2D3 treatment had different effects according to the cell stage, indicating different modes of action driving proliferation and differentiation. In preadipocytes, 1,25(OH)2D3 induced G1 growth arrest at both tested concentrations without altering CDKN1A gene expression. Treatment with 100 nM 1,25(OH)2D3 also decreased MTT absorbance and the lipid concentration. Moreover, increased normalized cell index values and decreased metabolic activity were not induced by proliferation or apoptosis. Exposure to 100 nM 1,25(OH)2D3 induced VDR, CEBPA, and CEBPB expression, even in the preadipocyte stage. During adipogenesis, 1,25(OH)2D3 had limited effects on processes such as VDR and PPARG gene expression, but it upregulated CEBPA expression. Conclusions: We demonstrated for the first time that 1,25(OH)2D3 induces changes in preadipocytes, including VDR expression and growth arrest, and increases the lipid content in adipocytes treated for 16 days. Preadipocytes are important cells in adipose tissue homeostasis, and understanding the role of 1,25(OH)2D3 in adipogenesis is a crucial step in ensuring adequate vitamin D supplementation, especially for obese individuals.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Mikyoung You ◽  
Jin-Seon Yook ◽  
Soonkyu Chung

Abstract Objectives Iron regulatory protein 1 (IRP1) plays a key regulator of cellular iron metabolism, systemic oxygen sensing, and erythropoiesis. Deletion of IRP1 leads to profound HIF2a-dependent abnormalities in erythropoiesis and iron metabolism. Previously, we demonstrated that modulation of adipose tissue iron metabolism is necessary for adipose tissue browning. However, the role of IRP1 in adipose tissue browning and its metabolic consequences are uncertain. This study aimed to investigate the role of IRP1 in regulating adipose tissue browning in a mouse model of genetic ablation of IPR1 (IRP1−/−). Methods The IRP1−/− mice and wildtype (WT) controls were kept either at room (25°C) or cold (6°C) temperature for 7 days. Adipose tissue browning was evaluated by UCP1 expression and prevalence of beige-like structure in inguinal fat. Thermogenic heat release captured by infrared camera and core body temperature was measured by a rectal thermometer. The modulation of iron metabolism was assessed by serum levels of ferritin, hematocrit, and erythropoietin levels by ELISA. To investigate the role of IRP1 on energy metabolism, IRP1−/− and WT controls were fed a high-fat diet (45%) for 14 weeks. Insulin sensitivity was determined by glucose and insulin tolerance test and HOMA-IR score. [3H]-2-deoxyglucose (DOG) was injected to determine the distribution of 3H-radioactivity was quantified. Results IRP1−/− mice dramatically increased serum levels of erythropoietin but decreased hepcidin. IRP1−/− developed polycythemia and reticulocytosis, which was not affected by cold exposure. IRP1−/− were completely blunted in cold-induced browning in the inguinal fat showing no changes in UCP1 and adipocyte morphology. Unexpectedly, IRP1−/− showed higher core body temperature and heat release than control independent of UCP1 expression. Chronic intake of HF diet paradoxically increased the insulin sensitivity regardless of obesity. 2-DOG distribution was significantly increased in red blood cells, suggesting that red blood cell-dependent energy expenditure significantly contributed to rapid glucose disposal. Conclusions Disruption of IRP1 blunted adipose tissue browning. The paradoxical rise in insulin sensitivity in IRP1−/− is likely due to red blood cells-mediated energy expenditure. Funding Sources None.


1988 ◽  
Vol 255 (6) ◽  
pp. R874-R881 ◽  
Author(s):  
I. R. Park ◽  
J. Himms-Hagen

We studied the role of the sympathetic innervation in development and maintenance of increased levels of uncoupling protein (UCP) and of thyroxine 5'-deiodinase (TD) during cold-induced growth of brown adipose tissue (BAT). Interscapular BAT was unilaterally (and in some experiments, bilaterally) denervated either before acclimation to cold (4 degrees C) for 12 days or after 14 days of a total 28-day period of acclimation to cold. BAT norepinephrine was reduced to 3-7% of the normal level in denervated BAT for up to 26 days. Denervation slowed, but did not prevent, cold-induced increases in total protein, in mitochondrial GDP binding, and in mitochondrial UCP concentration, which all reached 50% or more of the elevated level in intact tissue. In contrast, TD activity did not exceed 10% of the elevated level in intact tissue at any time. Denervation after cold acclimation resulted in a very rapid loss of TD activity, a slower and selective loss (after a lag of 1 day) of UCP, and a much slower loss of tissue protein. We conclude that the sympathetic innervation is required for an optimal trophic response of BAT to cold acclimation and for maintenance in the hypertrophied state but that other factors are also involved. Induction and maintenance of TD in BAT does need the sympathetic innervation.


2008 ◽  
Vol 199 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Andrea Anedda ◽  
Eduardo Rial ◽  
M Mar González-Barroso

Metformin is a drug widely used to treat type 2 diabetes. It enhances insulin sensitivity by improving glucose utilization in tissues like liver or muscle. Metformin inhibits respiration, and the decrease in cellular energy activates the AMP-activated protein kinase that in turn switches on catabolic pathways. Moreover, metformin increases lipolysis and β-oxidation in white adipose tissue, thereby reducing the triglyceride stores. The uncoupling proteins (UCPs) are transporters that lower the efficiency of mitochondrial oxidative phosphorylation. UCP2 is thought to protect against oxidative stress although, alternatively, it could play an energy dissipation role. The aim of this work was to analyse the involvement of UCP2 on the effects of metformin in white adipocytes. We studied the effect of this drug in differentiating 3T3-L1 adipocytes and found that metformin causes oxidative stress since it increases the levels of reactive oxygen species (ROS) and lowers the aconitase activity. Variations in UCP2 protein levels parallel those of ROS. Metformin also increases lipolysis in these cells although only when the levels of ROS and UCP2 have decreased. Hence, UCP2 does not appear to be needed to facilitate fatty acid oxidation. Furthermore, treatment of C57BL/6 mice with metformin also augmented the levels of UCP2 in epididymal white adipose tissue. We conclude that metformin treatment leads to the overexpression of UCP2 in adipocytes to minimize the oxidative stress that is probably due to the inhibition of respiration caused by the drug.


Sign in / Sign up

Export Citation Format

Share Document