scholarly journals Involvement of AMPK in regulating slow-twitch muscle atrophy during hindlimb unloading in mice

2015 ◽  
Vol 309 (7) ◽  
pp. E651-E662 ◽  
Author(s):  
Tatsuro Egawa ◽  
Ayumi Goto ◽  
Yoshitaka Ohno ◽  
Shingo Yokoyama ◽  
Akihiro Ikuta ◽  
...  

AMPK is considered to have a role in regulating skeletal muscle mass. However, there are no studies investigating the function of AMPK in modulating skeletal muscle mass during atrophic conditions. In the present study, we investigated the difference in unloading-associated muscle atrophy and molecular functions in response to 2-wk hindlimb suspension between transgenic mice overexpressing the dominant-negative mutant of AMPK (AMPK-DN) and their wild-type (WT) littermates. Male WT ( n = 24) and AMPK-DN ( n = 24) mice were randomly divided into two groups: an untreated preexperimental control group ( n = 12 in each group) and an unloading ( n = 12 in each group) group. The relative soleus muscle weight and fiber cross-sectional area to body weight were decreased by ∼30% in WT mice by hindlimb unloading and by ∼20% in AMPK-DN mice. There were no changes in puromycin-labeled protein or Akt/70-kDa ribosomal S6 kinase signaling, the indicators of protein synthesis. The expressions of ubiquitinated proteins and muscle RING finger 1 mRNA and protein, markers of the ubiquitin-proteasome system, were increased by hindlimb unloading in WT mice but not in AMPK-DN mice. The expressions of molecules related to the protein degradation system, phosphorylated forkhead box class O3a, inhibitor of κBα, microRNA (miR)-1, and miR-23a, were decreased only in WT mice in response to hindlimb unloading, and 72-kDa heat shock protein expression was higher in AMPK-DN mice than in WT mice. These results imply that AMPK partially regulates unloading-induced atrophy of slow-twitch muscle possibly through modulation of the protein degradation system, especially the ubiquitin-proteasome system.

Function ◽  
2021 ◽  
Author(s):  
Leslie M Baehr ◽  
David C Hughes ◽  
Sarah A Lynch ◽  
Delphi Van Haver ◽  
Teresa Mendes Maia ◽  
...  

Abstract MuRF1 (TRIM63) is a muscle-specific E3 ubiquitin ligase and component of the ubiquitin proteasome system. MuRF1 is transcriptionally upregulated under conditions that cause muscle loss, in both rodents and humans, and is a recognized marker of muscle atrophy. In this study, we used in vivo electroporation to determine if MuRF1 overexpression alone can cause muscle atrophy and, in combination with ubiquitin proteomics, identify the endogenous MuRF1 substrates in skeletal muscle. Overexpression of MuRF1 in adult mice increases ubiquitination of myofibrillar and sarcoplasmic proteins, increases expression of genes associated with neuromuscular junction instability, and causes muscle atrophy. A total of 169 ubiquitination sites on 56 proteins were found to be regulated by MuRF1. MuRF1-mediated ubiquitination targeted both thick and thin filament contractile proteins, as well as, glycolytic enzymes, deubiquitinases, p62, and VCP. These data reveal a potential role for MuRF1 in not only the breakdown of the sarcomere, but also the regulation of metabolism and other proteolytic pathways in skeletal muscle.


Author(s):  
Eva Pigna ◽  
Krizia Sanna ◽  
Dario Coletti ◽  
Zhenlin Li ◽  
Ara Parlakian ◽  
...  

Physiological autophagy plays a crucial role in the regulation of muscle mass and metabolism, while the excessive induction or the inhibition of the autophagic flux contributes to the progression of several diseases. Autophagy can be activated by different stimuli, including cancer, exercise, caloric restriction and denervation. The latter leads to muscle atrophy through the activation of catabolic pathways, i.e. the ubiquitin-proteasome system and autophagy. However, the kinetics of autophagy activation and the upstream molecular pathways in denervated skeletal muscle have not been reported yet. In this study, we characterized the kinetics of autophagic induction, quickly triggered by denervation, and report the Akt/mTOR axis activation. Besides, with the aim to assess the relative contribution of autophagy in neurogenic muscle atrophy, we triggered autophagy with different stimuli along with denervation, and observed that four week-long autophagic induction, by either intermitted fasting or rapamycin treatment, did not significantly affect muscle mass loss. We conclude that: i) autophagy does not play a major role in inducing muscle loss following denervation; ii) nonetheless, autophagy may have a regulatory role in denervation induced muscle atrophy, since it is significantly upregulated as early as eight hours after denervation; iii) Akt/mTOR axis, AMPK and FoxO3a are activated consistently with the progression of muscle atrophy, further highlighting the complexity of the signaling response to the atrophying stimulus deriving from denervation.


2020 ◽  
Vol 21 (5) ◽  
pp. 1628 ◽  
Author(s):  
Keisuke Hitachi ◽  
Masashi Nakatani ◽  
Shiori Funasaki ◽  
Ikumi Hijikata ◽  
Mizuki Maekawa ◽  
...  

Skeletal muscle is a highly plastic organ that is necessary for homeostasis and health of the human body. The size of skeletal muscle changes in response to intrinsic and extrinsic stimuli. Although protein-coding RNAs including myostatin, NF-κβ, and insulin-like growth factor-1 (IGF-1), have pivotal roles in determining the skeletal muscle mass, the role of long non-coding RNAs (lncRNAs) in the regulation of skeletal muscle mass remains to be elucidated. Here, we performed expression profiling of nine skeletal muscle differentiation-related lncRNAs (DRR, DUM1, linc-MD1, linc-YY1, LncMyod, Neat1, Myoparr, Malat1, and SRA) and three genomic imprinting-related lncRNAs (Gtl2, H19, and IG-DMR) in mouse skeletal muscle. The expression levels of these lncRNAs were examined by quantitative RT-PCR in six skeletal muscle atrophy models (denervation, casting, tail suspension, dexamethasone-administration, cancer cachexia, and fasting) and two skeletal muscle hypertrophy models (mechanical overload and deficiency of the myostatin gene). Cluster analyses of these lncRNA expression levels were successfully used to categorize the muscle atrophy models into two sub-groups. In addition, the expression of Gtl2, IG-DMR, and DUM1 was altered along with changes in the skeletal muscle size. The overview of the expression levels of lncRNAs in multiple muscle atrophy and hypertrophy models provides a novel insight into the role of lncRNAs in determining the skeletal muscle mass.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3362
Author(s):  
Ji Eun Shin ◽  
Seok Jun Park ◽  
Seung Il Ahn ◽  
Se-Young Choung

Sarcopenia, a loss of skeletal muscle mass and function, is prevalent in older people and associated with functional decline and mortality. Protein supplementation is necessary to maintain skeletal muscle mass and whey protein hydrolysates have the best nutrient quality among food proteins. In the first study, C57BL/6 mice were subjected to immobilization for 1 week to induce muscle atrophy. Then, mice were administered with four different whey protein hydrolysates for 2 weeks with continuous immobilization. Among them, soluble whey protein hydrolysate (WP-S) had the greatest increase in grip strength, muscle weight, and cross-sectional area of muscle fiber than other whey protein hydrolysates. To investigate the molecular mechanism, we conducted another experiment with the same experimental design. WP-S significantly promoted the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway and inhibited the PI3K/Akt/forkhead box O (FoxO) pathway. In addition, it increased myosin heavy chain (MyHC) expression in both the soleus and quadriceps and changed MyHC isoform expressions. In conclusion, WP-S attenuated muscle atrophy induced by immobilization by enhancing the net protein content regulating muscle protein synthesis and degradation. Thus, it is a necessary and probable candidate for developing functional food to prevent sarcopenia.


2020 ◽  
Vol 129 (2) ◽  
pp. 272-282 ◽  
Author(s):  
Sue C. Bodine

Skeletal muscle atrophy continues to be a serious consequence of many diseases and conditions for which there is no treatment. Our understanding of the mechanisms regulating skeletal muscle mass has improved considerably over the past two decades. For many years it was known that skeletal muscle atrophy resulted from an imbalance between protein synthesis and protein breakdown, with the net balance shifting toward protein breakdown. However, the molecular and cellular mechanisms underlying the increased breakdown of myofibrils was unknown. Over the past two decades, numerous reports have identified novel genes and signaling pathways that are upregulated and activated in response to stimuli such as disuse, inflammation, metabolic stress, starvation and others that induce muscle atrophy. This review summarizes the discovery efforts performed in the identification of several pathways involved in the regulation of skeletal muscle mass: the mammalian target of rapamycin (mTORC1) and the ubiquitin proteasome pathway and the E3 ligases, MuRF1 and MAFbx. While muscle atrophy is a common outcome of many diseases, it is doubtful that a single gene or pathway initiates or mediates the breakdown of myofibrils. Interestingly, however, is the observation that upregulation of the E3 ligases, MuRF1 and MAFbx, is a common feature of many divergent atrophy conditions. The challenge for the field of muscle biology is to understand how all of the various molecules, transcription factors, and signaling pathways interact to produce muscle atrophy and to identify the critical factors for intervention.


2021 ◽  
Vol 14 ◽  
Author(s):  
Ajay Singh ◽  
Aarti Yadav ◽  
Jatin Phogat ◽  
Rajesh Dabur

: Skeletal muscles are considered the largest reservoirs of the protein pool in the body and are critical for the maintenances of body homeostasis. Skeletal muscle atrophy is supported by various physiopathological conditions that lead to loss of muscle mass and contractile capacity of the skeletal muscle. Lysosomal mediated autophagy and ubiquitin-proteasomal system (UPS) concede the major intracellular systems of muscle protein degradation that result in the loss of mass and strength. Both systems recognize ubiquitination as a signal of degradation through different mechanisms, a sign of dynamic interplay between systems. Hence, growing shreds of evidence suggest the interdependency of autophagy and UPS in the progression of skeletal muscle atrophy under various pathological conditions. Therefore, understanding the molecular dynamics as well associated factors responsible for their interdependency is a necessity for the new therapeutic insights to counteract the muscle loss. Based on current literature, the present review summarizes the factors interplay in between the autophagy and UPS in favor of enhanced proteolysis of skeletal muscle and how they affect the anabolic signaling pathways under various conditions of skeletal muscle atrophy.


2017 ◽  
Vol 122 (5) ◽  
pp. 1336-1350 ◽  
Author(s):  
Leslie M. Baehr ◽  
Daniel W. D. West ◽  
Andrea G. Marshall ◽  
George R. Marcotte ◽  
Keith Baar ◽  
...  

Disuse is a potent inducer of muscle atrophy, but the molecular mechanisms driving this loss of muscle mass are highly debated. In particular, the extent to which disuse triggers decreases in protein synthesis or increases in protein degradation, and whether these changes are uniform across muscles or influenced by age, is unclear. We aimed to determine the impact of disuse on protein synthesis and protein degradation in lower limb muscles of varied function and fiber type in adult and old rats. Alterations in protein synthesis and degradation were measured in the soleus, medial gastrocnemius, and tibialis anterior (TA) muscles of adult and old rats subjected to hindlimb unloading (HU) for 3, 7, or 14 days. Loss of muscle mass was progressive during the unloading period, but highly variable (−9 to −38%) across muscle types and between ages. Protein synthesis decreased significantly in all muscles, except for the old TA. Atrophy-associated gene expression was only loosely associated with protein degradation as muscle RING finger-1, muscle atrophy F-box (MAFbx), and Forkhead box O1 expression significantly increased in all muscles, but an increase in proteasome activity was only observed in the adult soleus. MAFbx protein levels were significantly higher in the old muscles compared with adult muscles, despite the old having higher expression of microRNA-23a. These results indicate that adult and old muscles respond similarly to HU, and the greatest loss in muscle mass occurs in predominantly slow-twitch extensor muscles due to a concomitant decrease in protein synthesis and increase in protein degradation. NEW & NOTEWORTHY In this study, we showed that age did not intensify the atrophy response to unloading in rats, but rather that the degree of atrophy was highly variable across muscles, indicating that changes in protein synthesis and protein degradation occur in a muscle-specific manner. Our data emphasize the importance of studying muscles of varying fiber-type and physiological function at multiple time points to fully understand the molecular mechanisms responsible for disuse atrophy.


PLoS ONE ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. e41701 ◽  
Author(s):  
Telma F. Cunha ◽  
Aline V. N. Bacurau ◽  
Jose B. N. Moreira ◽  
Nathalie A. Paixão ◽  
Juliane C. Campos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document