scholarly journals SUMOylation protects against IL-1β-induced apoptosis in INS-1 832/13 cells and human islets

2014 ◽  
Vol 307 (8) ◽  
pp. E664-E673 ◽  
Author(s):  
Catherine Hajmrle ◽  
Mourad Ferdaoussi ◽  
Gregory Plummer ◽  
Aliya F. Spigelman ◽  
Krista Lai ◽  
...  

Posttranslational modification by the small ubiquitin-like modifier (SUMO) peptides, known as SUMOylation, is reversed by the sentrin/SUMO-specific proteases (SENPs). While increased SUMOylation reduces β-cell exocytosis, insulin secretion, and responsiveness to GLP-1, the impact of SUMOylation on islet cell survival is unknown. Mouse islets, INS-1 832/13 cells, or human islets were transduced with adenoviruses to increase either SENP1 or SUMO1 or were transfected with siRNA duplexes to knockdown SENP1. We examined insulin secretion, intracellular Ca2+ responses, induction of endoplasmic reticulum stress markers and inducible nitric oxide synthase (iNOS) expression, and apoptosis by TUNEL and caspase 3 cleavage. Surprisingly, upregulation of SENP1 reduces insulin secretion and impairs intracellular Ca2+ handling. This secretory dysfunction is due to SENP1-induced cell death. Indeed, the detrimental effect of SENP1 on secretory function is diminished when two mediators of β-cell death, iNOS and NF-κB, are pharmacologically inhibited. Conversely, enhanced SUMOylation protects against IL-1β-induced cell death. This is associated with reduced iNOS expression, cleavage of caspase 3, and nuclear translocation of NF-κB. Taken together, these findings identify SUMO1 as a novel antiapoptotic protein in islets and demonstrate that reduced viability accounts for impaired islet function following SENP1 up-regulation.

2020 ◽  
Author(s):  
Ernesto S. Nakayasu ◽  
Cailin Deiter ◽  
Jennifer E. Kyle ◽  
Michelle A. Guney ◽  
Dylan Sarbaugh ◽  
...  

SummaryLipids have been implicated as mediators of insulitis and β-cell death in type 1 diabetes development, but the mechanisms underlying this association are poorly understood. Here, we investigated the changes in islet/β-cell lipid composition using three models of insulitis: human islets and EndoC-βH1 β-cells treated with the cytokines IL-1β and IFN-γ, and islets from non-obese diabetic mice. Across all three models, lipidomic analyses showed a consistent change in abundance of the lysophosphatidylcholine, phosphatidylcholine and triacylglycerol species. We also showed that lysophosphatidylcholine and its biosynthetic enzyme PLA2G6 are enriched in murine islets. We determined that the ADP-ribosyl-acceptor glycohydrolase ARH3 is regulated by cytokines downstream of PLA2G6, which in turn regulates proteins involved in apoptosis, lipid metabolism, antigen processing and presentation and chemokines. ARH3 reduced cytokine-induced apoptosis, which may represent a negative feedback mechanism. Overall, these data show the importance of lipid metabolism in regulating β-cell death in type 1 diabetes.HighlightsLipidomics of 3 insulitis models revealed commonly regulated lipid classes.Identification of 35 proteins regulated by cytokines via PLA2G6 signaling.ARH3 reduces cytokine-induced apoptosis via PLA2G6 regulation.ARH3 regulates the levels of proteins related to insulitis and type 1 diabetes.


2002 ◽  
Vol 282 (5) ◽  
pp. G825-G834 ◽  
Author(s):  
Guoping Feng ◽  
Neil Kaplowitz

Staurosporine (STS) induces apoptosis in various cell lines. We report in this study that primary cultured mouse hepatocytes are less sensitive to STS compared with Jurkat cells and Huh-7 cells. In contrast to the cell lines, no apparent release of cytochrome c or loss of mitochondrial transmembrane potential was detected in primary hepatocytes undergoing STS-induced apoptosis. Caspase-3 was activated in primary hepatocytes by STS treatment, but caspase-9 and -12 were not activated, and caspase-3 activation is not dependent on caspase-8. These findings point to a novel pathway for caspase-3 activation by STS in primary hepatocytes. Pretreatment with caspase inhibitor converted STS-induced apoptosis of hepatocytes to necrotic cell death without significantly changing total cell death. Thus STS causes hepatocytes to commit to death upstream of the activation of caspases. We also demonstrated that STS dramatically sensitized primary hepatocytes to tumor necrosis factor-α-induced apoptosis. STS activated IκB kinase and nuclear factor-κB (NF-κB) nuclear translocation and DNA binding but inhibited transactivation of IκB-α, inducible nitric oxide synthase, and inhibitor of apoptosis protein-1 in hepatocytes and NF-κB reporter in transfected Huh-7 cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniela Nasteska ◽  
Nicholas H. F. Fine ◽  
Fiona B. Ashford ◽  
Federica Cuozzo ◽  
Katrina Viloria ◽  
...  

AbstractTranscriptionally mature and immature β-cells co-exist within the adult islet. How such diversity contributes to insulin release remains poorly understood. Here we show that subtle differences in β-cell maturity, defined using PDX1 and MAFA expression, contribute to islet operation. Functional mapping of rodent and human islets containing proportionally more PDX1HIGH and MAFAHIGH β-cells reveals defects in metabolism, ionic fluxes and insulin secretion. At the transcriptomic level, the presence of increased numbers of PDX1HIGH and MAFAHIGH β-cells leads to dysregulation of gene pathways involved in metabolic processes. Using a chemogenetic disruption strategy, differences in PDX1 and MAFA expression are shown to depend on islet Ca2+ signaling patterns. During metabolic stress, islet function can be restored by redressing the balance between PDX1 and MAFA levels across the β-cell population. Thus, preserving heterogeneity in PDX1 and MAFA expression, and more widely in β-cell maturity, might be important for the maintenance of islet function.


2001 ◽  
Vol 280 (1) ◽  
pp. L10-L17 ◽  
Author(s):  
Han-Ming Shen ◽  
Zhuo Zhang ◽  
Qi-Feng Zhang ◽  
Choon-Nam Ong

Alveolar macrophages (AMs) are the principal target cells of silica and occupy a key position in the pathogenesis of silica-related diseases. Silica has been found to induce apoptosis in AMs, whereas its underlying mechanisms involving the initiation and execution of apoptosis are largely unknown. The main objective of the present study was to examine the form of cell death caused by silica and the mechanisms involved. Silica-induced apoptosis in AMs was evaluated by terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling assay and cell cycle/DNA content analysis. The elevated level of reactive oxygen species (ROS), caspase-9 and caspase-3 activation, and poly(ADP-ribose) polymerase (PARP) cleavage in silica-treated AMs were also determined. The results showed that there was a temporal pattern of apoptotic events in silica-treated AMs, starting with ROS formation and followed by caspase-9 and caspase-3 activation, PARP cleavage, and DNA fragmentation. Silica-induced apoptosis was significantly attenuated by a caspase-3 inhibitor, N-acetyl-Asp-Glu-Val-Asp aldehyde, and ebselen, a potent antioxidant. These findings suggest that apoptosis is an important form of cell death caused by silica exposure in which the elevated ROS level that results from silica exposure may act as an initiator, leading to caspase activation and PARP cleavage to execute the apoptotic process.


2018 ◽  
Vol 51 (5) ◽  
pp. 2185-2197 ◽  
Author(s):  
Lili Men ◽  
Juan Sun ◽  
Decheng Ren

Background/Aims: VCP-interacting membrane selenoprotein (VIMP), an ER resident selenoprotein, is highly expressed in β-cells, however, the role of VIMP in β-cells has not been characterized. In this study, we studied the relationship between VIMP deficiency and β-cell survival in MIN6 insulinoma cells. Methods: To determine the role of VIMP in β-cells, lentiviral VIMP shRNAs were used to knock down (KD) expression of VIMP in MIN6 cells. Cell death was quantified by propidium iodide (PI) staining followed by flow cytometric analyses using a FACS Caliber and FlowJo software. Cell apoptosis and proliferation were determined by TUNEL assay and Ki67 staining, respectively. Cell cycle was analyzed after PI staining. Results: The results show that 1) VIMP suppression induces β-cell apoptosis, which is associated with a decrease in Bcl-xL, and the β-cell apoptosis induced by VIMP suppression can be inhibited by overexpression of Bcl-xL; 2) VIMP knockdown (KD) decreases cell proliferation and G1 cell cycle arrest by accumulating p27 and decreasing E2F1; 3) VIMP KD suppresses unfolded protein response (UPR) activation by regulating the IRE1α and PERK pathways; 4) VIMP KD increases insulin secretion. Conclusion: These results suggest that VIMP may function as a novel regulator to modulate β-cell survival, proliferation, cell cycle, UPR and insulin secretion in MIN6 cells.


2004 ◽  
Vol 32 (03) ◽  
pp. 377-387 ◽  
Author(s):  
Hyung-Jin Kim ◽  
Seon Il Jang ◽  
Young-Jun Kim ◽  
Hyun-Ock Pae ◽  
Hae-Young Won ◽  
...  

We studied the effect of 4-acetyl-12,13-epoxyl-9-trichothecene-3,15-diol (AETD) isolated from Isaria japonica, one of the most popular Chinese fungal medicines, on the induction of apoptosis in rat bladder carcinoma NBT-II cells. AETD was cytotoxic to NBT-II cells, and this cytotoxic effect appears to be attributed to its induction of apoptotic cell death, as AETD induced nuclear morphological changes and internucleosomal DNA fragmentation, and increased the proportion of hypodiploid cells and activity of caspase-3. AETD treatment also decreased the expression of the anti-apoptotic protein Bcl-2 and increased the expression of the pro-apoptotic protein Bax. These results provide important information in understanding the mechanism(s) of AETD-induced apoptosis.


2008 ◽  
Vol 294 (3) ◽  
pp. E540-E550 ◽  
Author(s):  
Elida Lai ◽  
George Bikopoulos ◽  
Michael B. Wheeler ◽  
Maria Rozakis-Adcock ◽  
Allen Volchuk

Chronic exposure to elevated saturated free fatty acid (FFA) levels has been shown to induce endoplasmic reticulum (ER) stress that may contribute to promoting pancreatic β-cell apoptosis. Here, we compared the effects of FFAs on apoptosis and ER stress in human islets and two pancreatic β-cell lines, rat INS-1 and mouse MIN6 cells. Isolated human islets cultured in vitro underwent apoptosis, and markers of ER stress pathways were elevated by chronic palmitate exposure. Palmitate also induced apoptosis in MIN6 and INS-1 cells, although the former were more resistant to both apoptosis and ER stress. MIN6 cells were found to express significantly higher levels of ER chaperone proteins than INS-1 cells, which likely accounts for the ER stress resistance. We attempted to determine the relative contribution that ER stress plays in palmitate-induced β-cell apoptosis. Although overexpressing GRP78 in INS-1 cells partially reduced susceptibility to thapsigargin, this failed to reduce palmitate-induced ER stress or apoptosis. In INS-1 cells, palmitate induced apoptosis at concentrations that did not result in significant ER stress. Finally, MIN6 cells depleted of GRP78 were more susceptible to tunicamycin-induced apoptosis but not to palmitate-induced apoptosis compared with control cells. These results suggest that ER stress is likely not the main mechanism involved in palmitate-induced apoptosis in β-cell lines. Human islets and MIN6 cells were found to express high levels of stearoyl-CoA desaturase-1 compared with INS-1 cells, which may account for the decreased susceptibility of these cells to the cytotoxic effects of palmitate.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Yu-Huei Liu ◽  
Konan Peck ◽  
Jung-Yaw Lin

Abrin (ABR), a protein purified from the seeds ofAbrus precatorius, induces apoptosis in various types of cancer cells. However, the detailed mechanism remains largely uncharacterized. By using a cDNA microarray platform, we determined that prohibitin (PHB), a tumor suppressor protein, is significantly upregulated in ABR-triggered apoptosis. ABR-induced upregulation of PHB is mediated by the stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) pathway, as demonstrated by chemical inhibitors. In addition, ABR significantly induced the expression of Bax as well as the activation of caspase-3 and poly(ADP-ribose) polymerase (PARP) in Jurkat T cells, whereas the reduction of PHB by specific RNA interference delayed ABR-triggered apoptosis through the proapoptotic genes examined. Moreover, our results also indicated that nuclear translocation of the PHB-p53 complex may play a role in the transcription of Bax. Collectively, our data show that PHB plays a role in ABR-induced apoptosis, which may be helpful for the development of diagnostic or therapeutic agents.


2016 ◽  
Vol 5 (10) ◽  
pp. 988-996 ◽  
Author(s):  
Kevin Vivot ◽  
Valentine S. Moullé ◽  
Bader Zarrouki ◽  
Caroline Tremblay ◽  
Arturo D. Mancini ◽  
...  

Author(s):  
Nicole Sheanon ◽  
Deborah Elder ◽  
Jane Khoury ◽  
Lori Casnellie ◽  
Iris Gutmark-Little ◽  
...  

Intro: Adult women with Turner syndrome (TS) have a high prevalence of diabetes and β-cell dysfunction that increases morbidity and mortality, but, it is unknown if there is β-cell dysfunction present in youth with TS. This study aimed to determine the prevalence of β-cell dysfunction in youth with TS and the impact of traditional therapies on insulin sensitivity and insulin secretion. Methods: Cross-sectional, observational study recruited 60 girls with TS and 60 healthy controls (HC) matched on pubertal status. Each subject had a history, physical exam and oral glucose tolerance test (OGTT). Oral glucose and c-peptide minimal modeling was used to determine β-cell function. Results: Twenty-one TS girls (35%) met criteria for pre-diabetes. Impaired fasting glucose (IFG) was present in 18% of girls with TS and 2% HC (p-value = 0.0003). Impaired glucose tolerance (IGT) was present in 23% of TS girls and 0% HC (p-value < 0.001). The HbA1c was not different between TS and HC (median 5%, p= 0.42). Youth with TS had significant reductions in insulin sensitivity (SI), β-cell responsivity (Φ), and disposition index (DI) compared to HC. These differences remained significant when controlling for BMI z-score (p-values: 0.0006, 0.002, <0.0001 for SI, Φtotal, DI, respectively). Conclusions: β-cell dysfunction is present in youth with TS compared to controls. The presence of both reduced insulin secretion and insulin sensitivity suggest a unique TS-related glycemic phenotype. Based on the data from this study, we strongly suggest that providers employ serial OGTT to screen for glucose abnormalities in TS youth.


Sign in / Sign up

Export Citation Format

Share Document