Effects of glucocorticoids on energy metabolism and food intake in humans

1996 ◽  
Vol 271 (2) ◽  
pp. E317-E325 ◽  
Author(s):  
P. A. Tataranni ◽  
D. E. Larson ◽  
S. Snitker ◽  
J. B. Young ◽  
J. P. Flatt ◽  
...  

The effect of glucocorticoid administration on energy metabolism and food intake was studied in 20 healthy, nondiabetic Caucasian male volunteers [27 +/- 5 (SD) yr, 72 +/- 9 kg, 20 +/- 7% body fat] randomly and blindly assigned to glucocorticoid (methylprednisolone, METH; n = 10) or placebo (PLAC; n = 10) treatment. Each subject was studied twice: during a weight maintenance diet and during ad libitum food intake. Energy metabolism was measured by indirect calorimetry and food intake by an automated food-selection system. Twenty-four-hour urinary norepinephrine excretion (24-h NE) was used as an estimate of sympathetic nervous system activity. During weight maintenance, METH intravenous infusion (125 mg/30 min) increased energy expenditure compared with PLAC, and after 4 days of oral therapy, METH (40 mg/day) decreased 24-h NE and increased energy expenditure compared with PLAC. During ad libitum food intake, after 4 days of METH (40 mg/day) or PLAC oral therapy, both groups increased their energy intake over weight maintenance, but the increase was significantly larger in the METH group compared with the PLAC group (4,554 +/- 1,857 vs. 2,867 +/- 846 kcal/day; P = 0.04). Our data suggest that therapeutic doses of glucocorticoids induce obesity mostly by increasing energy intake, an effect which may be related to the ability of glucocorticoids to act directly or indirectly on the central regulation of appetite.

1992 ◽  
Vol 55 (2) ◽  
pp. 343-349 ◽  
Author(s):  
R Rising ◽  
S Alger ◽  
V Boyce ◽  
H Seagle ◽  
R Ferraro ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1051
Author(s):  
Lore Metz ◽  
Laurie Isacco ◽  
Nicole Fearnbach ◽  
Bruno Pereira ◽  
David Thivel ◽  
...  

Background: The aim of this study was to investigate energy expenditure, food intake and appetite feelings in response to water- vs. land-based cycling exercises in healthy young women. Methods: Anthropometric measurements and body composition were assessed among 20 women who performed four experimental sessions in a randomized order: (i) a rest condition (CONT); (ii) a 30-min aqua-cycling exercise session (WAT), (iii) a 30-min land-cycling exercise session at the same rpm (LAND), (iv) a land-cycling session at the same heart rate and isoenergetic to WAT (LAND-Iso). Energy expenditure and substrate oxidation were measured by indirect calorimetry; ad libitum energy intake during subsequent lunch was assessed with appetite feelings recorded at regular intervals. Results: Energy expenditure was higher during the 30-min WAT than during CONT and LAND (p < 0.001). Carbohydrate oxidation was higher in the WAT session compared to CONT and LAND (p < 0.05). LAND-Iso duration was significantly increased (+14 min) to reach the same energy expenditure as in the WAT condition (p < 0.05). There was no differences in food intake between sessions. Conclusion: While further studies are needed to optimize the chronic energetic effects of aqua-cycling, the present study suggests that this exercise modality could represent an efficient strategy to induce acute energy deficit.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joanna Moro ◽  
Catherine Chaumontet ◽  
Patrick C. Even ◽  
Anne Blais ◽  
Julien Piedcoq ◽  
...  

AbstractTo study, in young growing rats, the consequences of different levels of dietary protein deficiency on food intake, body weight, body composition, and energy balance and to assess the role of FGF21 in the adaptation to a low protein diet. Thirty-six weanling rats were fed diets containing 3%, 5%, 8%, 12%, 15% and 20% protein for three weeks. Body weight, food intake, energy expenditure and metabolic parameters were followed throughout this period. The very low-protein diets (3% and 5%) induced a large decrease in body weight gain and an increase in energy intake relative to body mass. No gain in fat mass was observed because energy expenditure increased in proportion to energy intake. As expected, Fgf21 expression in the liver and plasma FGF21 increased with low-protein diets, but Fgf21 expression in the hypothalamus decreased. Under low protein diets (3% and 5%), the increase in liver Fgf21 and the decrease of Fgf21 in the hypothalamus induced an increase in energy expenditure and the decrease in the satiety signal responsible for hyperphagia. Our results highlight that when dietary protein decreases below 8%, the liver detects the low protein diet and responds by activating synthesis and secretion of FGF21 in order to activate an endocrine signal that induces metabolic adaptation. The hypothalamus, in comparison, responds to protein deficiency when dietary protein decreases below 5%.


2009 ◽  
Vol 69 (1) ◽  
pp. 34-38 ◽  
Author(s):  
C. R. Hankey

Treatments to induce weight loss for the obese patient centre on the achievement of negative energy balance. This objective can theoretically be attained by interventions designed to achieve a reduction in energy intake and/or an increase in energy expenditure. Such ‘lifestyle interventions’ usually comprise one or more of the following strategies: dietary modification; behaviour change; increases in physical activity. These interventions are advocated as first treatment steps in algorithms recommended by current clinical obesity guidelines. Medication and surgical treatments are potentially available to those unable to implement ‘lifestyle interventions’ effectively by achieving losses of between 5 kg and 10 kg. It is accepted that the minimum of 5% weight loss is required to achieve clinically-meaningful benefits. Dietary treatments differ widely. Successful weight loss is most often associated with quantification of energy intake rather than macronutrient composition. Most dietary intervention studies secure a weight loss of between 5 kg and 10 kg after intervention for 6 months, with gradual weight regain at 1 year where weight changes are 3–4 kg below the starting weight. Some dietary interventions when evaluated at 2 and 4 years post intervention report the effects of weight maintenance rather than weight loss. Specific anti-obesity medications are effective adjuncts to weight loss, in most cases doubling the weight loss of those given dietary advice only. Greater physical activity alone increases energy expenditure by insufficient amounts to facilitate clinically-important weight losses, but is useful for weight maintenance. Weight losses of between half and three-quarters of excess body weight are seen at 10 years post intervention with bariatric surgery, making this arguably the most effective weight-loss treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alessio Basolo ◽  
Takafumi Ando ◽  
Douglas C. Chang ◽  
Tim Hollstein ◽  
Jonathan Krakoff ◽  
...  

ObjectiveCirculating albumin is negatively associated with adiposity but whether it is associated with increased energy intake, lower energy expenditure or weight gain has not been examined.MethodsIn study 1 (n=238; 146 men), we evaluated whether fasting albumin concentration was associated with 24-h energy expenditure and ad libitum energy intake. In study 2 (n=325;167 men), we evaluated the association between plasma albumin and change in weight and body composition.ResultsAfter adjustment for known determinants of energy intake lower plasma albumin concentration was associated with greater total daily energy intake (β= 89.8 kcal/day per 0.1 g/dl difference in plasma albumin, p=0.0047). No associations were observed between plasma albumin concentrations and 24-h energy expenditure or 24-h respiratory quotient (p&gt;0.2). Over 6 years, volunteers gained on average 7.5 ± 11.7 kg (p&lt;0.0001). Lower albumin concentrations were associated with greater weight [β=3.53 kg, p=0.039 (adjusted for age, sex, follow up time), CI 0.16 to 6.21 per 1 g/dl difference albumin concentration] and fat mass (β=2.3 kg, p=0.022), respectively, but not with changes in fat free mass (p=0.06).ConclusionsLower albumin concentrations were associated with increased ad libitum food intake and weight gain, indicating albumin as a marker of energy intake regulation.Clinical Trial RegistrationClinicalTrials.gov, identifiers NCT00340132, NCT00342732.


2020 ◽  
pp. 1839-1854
Author(s):  
Keith N. Frayn ◽  
Rhys D. Evans

Food intake is sporadic and, in many cultures, occurs in three daily boluses. At the same time, energy expenditure is continuous and can vary to a large extent independently of the pattern of energy intake, although fixed or predictable demands (e.g. through occupation) means that in most persons food intake and energy expenditure are soon balanced. The body has developed complex systems that direct excess nutrients into storage pools; as they are needed, they also regulate the mobilization of nutrients from these pools. Carbohydrate, lipid, and protein (the latter a source of amino acids) are the three types of energy supply that are stored variably and assimilated from food each day. That we can carry on our daily lives without thinking about whether to store or mobilize fuels, and which to use, attests to the remarkable efficiency and refinement of these systems of metabolic control.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3893 ◽  
Author(s):  
Desiree M. Sigala ◽  
Adrianne M. Widaman ◽  
Bettina Hieronimus ◽  
Marinelle V. Nunez ◽  
Vivien Lee ◽  
...  

Sugar-sweetened beverage (sugar-SB) consumption is associated with body weight gain. We investigated whether the changes of (Δ) circulating leptin contribute to weight gain and ad libitum food intake in young adults consuming sugar-SB for two weeks. In a parallel, double-blinded, intervention study, participants (n = 131; BMI 18–35 kg/m2; 18–40 years) consumed three beverages/day containing aspartame or 25% energy requirement as glucose, fructose, high fructose corn syrup (HFCS) or sucrose (n = 23–28/group). Body weight, ad libitum food intake and 24-h leptin area under the curve (AUC) were assessed at Week 0 and at the end of Week 2. The Δbody weight was not different among groups (p = 0.092), but the increases in subjects consuming HFCS- (p = 0.0008) and glucose-SB (p = 0.018) were significant compared with Week 0. Subjects consuming sucrose- (+14%, p < 0.0015), fructose- (+9%, p = 0.015) and HFCS-SB (+8%, p = 0.017) increased energy intake during the ad libitum food intake trial compared with subjects consuming aspartame-SB (−4%, p = 0.0037, effect of SB). Fructose-SB decreased (−14 ng/mL × 24 h, p = 0.0006) and sucrose-SB increased (+25 ng/mL × 24 h, p = 0.025 vs. Week 0; p = 0.0008 vs. fructose-SB) 24-h leptin AUC. The Δad libitum food intake and Δbody weight were not influenced by circulating leptin in young adults consuming sugar-SB for 2 weeks. Studies are needed to determine the mechanisms mediating increased energy intake in subjects consuming sugar-SB.


2020 ◽  
Vol 21 (22) ◽  
pp. 8606
Author(s):  
Shogo Moriwaki ◽  
Yuki Narimatsu ◽  
Keisuke Fukumura ◽  
Eiko Iwakoshi-Ukena ◽  
Megumi Furumitsu ◽  
...  

RFamide-related peptide-3 (RFRP-3), the mammalian ortholog of avian gonadotropin-inhibitory hormone (GnIH), plays a crucial role in reproduction. In the present study, we explored the other functions of RFRP-3 by investigating the effects of chronic intracerebroventricular infusion of RFRP-3 (6 nmol/day) for 13 days on energy homeostasis in lean male C57BL/6J mice. The infusion of RFRP-3 increased cumulative food intake and body mass. In addition, the masses of brown adipose tissue (BAT) and the liver were increased by the administration of RFRP-3, although the mass of white adipose tissue was unchanged. On the other hand, RFRP-3 decreased O2 consumption, CO2 production, energy expenditure, and core body temperature during a short time period in the dark phase. These results suggest that the increase in food intake and the decrease in energy expenditure contributed to the gain of body mass, including the masses of BAT and the liver. The present study shows that RFRP-3 regulates not only reproductive function, but also energy metabolism, in mice.


1988 ◽  
Vol 255 (4) ◽  
pp. R616-R621 ◽  
Author(s):  
J. O. Hill ◽  
J. C. Anderson ◽  
D. Lin ◽  
F. Yakubu

The effects of differences in meal frequency on body weight, body composition, and energy expenditure were studied in mildly food-restricted male rats. Two groups were fed approximately 80% of usual food intake (as periodically determined in a group of ad libitum fed controls) for 131 days. One group received all of its food in 2 meals/day and the other received all of its food in 10-12 meals/day. The two groups did not differ in food intake, body weight, body composition, food efficiency (carcass energy gain per amount of food eaten), or energy expenditure at any time during the study. Both food-restricted groups had a lower food intake, body weight gain, and energy expenditure than a group of ad libitum-fed controls. In conclusion, these results suggest that amount of food eaten, but not the pattern with which it is ingested, has a major influence on energy balance during mild food restriction.


2000 ◽  
Vol 83 (1) ◽  
pp. 7-14 ◽  
Author(s):  
A. M. Johnstone ◽  
E. Shannon ◽  
S. Whybrow ◽  
C. A. Reid ◽  
R. J. Stubbs

The objectives of the present study were to examine the effects of (1) ingesting mandatory snacks v. no snacks and (2) the composition of isoenergetically-dense snacks high in protein, fat or carbohydrate, on food intake and energy intake (EI) in eight men with ad libitum access to a diet of fixed composition. Subjects were each studied four times in a 9 d protocol per treatment. On days 1–2, subjects were given a medium-fat maintenance diet estimated at 1·6 × resting metabolic rate (RMR). On days 3–9, subjects consumed three mandatory isoenergetic, isoenergetically dense (380 kJ/100 g) snacks at fixed time intervals (11.30, 15.30 and 19.30 hours). Total snack intake comprised 30 % of the subjects' estimated daily energy requirements. The treatments were high protein (HP), high carbohydrate (HC), high fat (HF) and no snack (NS). The order was randomized across subjects in a counterbalanced, Latin-square design. During the remainder of the day, subjects had ad libitum (meal size and frequency) access to a covertly manipulated medium-fat diet of fixed composition (fat: carbohydrate: protein, 40:47:13 by energy), energy density 550 kJ/100 g. All foods eaten were investigator-weighed before ingestion and left-overs were weighed after ingestion. Subjective hunger and satiety feelings were tracked hourly during waking hours using visual analogue scales. Ad libitum EI amounted to 13·9 MJ/d on the NS treatment compared with 11·7, 11·7 and 12·2 MJ/d on the HP, HC and HF diets respectively (F(3,21) 5·35; P = 0·007, sed 0·66). Total EI values were not significantly different at 14·6, 14·5, 15·0 and 14·2 MJ/d respectively. Snack composition did not differentially affect total daily food intake or EI. Average daily hunger was unaffected by the composition of the snacks. Only at 12.00 hours did subjects feel significantly more hungry during the NS condition, relative to the other dietary treatments (F(3,18) 4·42; P = 0·017). Body weight was unaffected by dietary treatment. In conclusion, snacking per se led to compensatory adjustments in feeding behaviour in lean men. Snack composition (with energy density controlled) did not affect the amount eaten of a diet of fixed composition. Results may differ in real life where subjects can alter both composition and amount of food they eat and energy density is not controlled.


Sign in / Sign up

Export Citation Format

Share Document