Extracellular Vesicles Enriched with miR-150 Released by Macrophages Regulates the TP53-IGF-1 Axis to Alleviate Myocardial Infarction

Author(s):  
Suxia Zheng ◽  
Maolei Gong ◽  
Jing Chen

Myocardial infarction (MI) is recognized as a major cause of death and disability around the world. Macrophage-derived extracellular vesicles (EVs) have been reportedly involved in the regulation of cellular responses to MI. Thus, we sought to clarify the mechanism by which macrophage-derived EVs regulate this process. RT-qPCR was carried out to determine miR-150 expression in an MI mouse model with ligation of the left anterior descending coronary artery (LAD) and in hypoxia/reoxygenation (H/R)-exposed cardiomyocytes. Bioinformatics analysis and dual luciferase reporter gene assay were adopted to identify the correlation of miR-150 with TP53 expression in cardiomyocytes. Gain- and loss-of function experiments were conducted in H/R-induced cardiomyocytes, cardiomyocytes incubated with EVs from miR-150 mimic-transfected macrophages, or MI-model mice treated with EVs from miR-150 mimic-transfected macrophages. HE and TUNEL staining assays were used for detecting inflammatory infiltration and cell apoptosis. The release of LDH by dead cardiomyocytes was measured with an LDH kit, and the apoptosis-related proteins, Bax, and cleaved-caspase 3 were determined by Western blot analysis. miR-150 expression was downregulated in the infarcted cardiac tissues of MI mice. Macrophage-derived EVs could transfer miR-150 into cardiomyocytes, where it directly targeted and suppressed TP53. Furthermore, miR-150 suppressed PTEN and activated p-AKT to upregulate IGF-1 expression. Furthermore, increased expression of EV-derived miR-150 prevented cardiomyocyte apoptosis in vitro, as evidenced by downregulated Bax and cleaved-caspase 3 and upregulated Bcl2 and alleviated MI in vivo. In conclusion, our study demonstrates the cardioprotective effect of macrophage-derived EV-miR-150 on MI-induced heart injury through negatively regulating the TP53-IGF-1 signaling pathway.

2020 ◽  
Author(s):  
Yuan Shao ◽  
Shaoqiang Zhang ◽  
Xiaoxia Wang ◽  
Xin Sun ◽  
Jie Wu ◽  
...  

Abstract Background Thyroid cancer is a major endocrine tumor and represents an emerging health problem worldwide. MicroRNAs (miRNAs) have been addressed to be associated with the pathogenesis and progression of thyroid cancer. However, it remains largely unknown what functions miR-30d may exert on thyroid cancer. This study herein aimed to identify the functional significance and mechanism of miR-30d in the progression of thyroid cancer. Methods The expression of miR-30d and ubiquitin-specific protease 22 (USP22) in cancerous tissues of patients with thyroid cancer was measured using RT-qPCR and Western blot analysis. In response to the gain- or loss-of-function of miR-30d and USP22, cell apoptosis was evaluated by flow cytometry and TUNEL staining in combination with the measurement of apoptosis-related proteins. The interactions among miR-30d, USP22, SIRT1, FOXO3a and PUMA were explored using a series of assays, including dual-luciferase reporter gene assay, Co-IP and ChIP assay. The effects of miR-30d and USP22 on thyroid tumorigenesis were finally validated in vivo. Results MiR-30b presented aberrant low expression in thyroid cancer tissues and this low expression correlated with poor prognosis of thyroid cancer patients. miR-30d promoted apoptosis of thyroid cancer cells through targeting USP22, an up-regulated gene in thyroid cancer. USP22 could enhance the stability of SIRT1 by inducing deubiquitination which consequently contributed to FOXO3a deacetylation-induced PUMA repression. It was verified that this regulatory mechanism was responsible for the pro-apoptotic effect of miR-30d by the in vivo tumorigenicity assay. Conclusion To conclude, the progression of thyroid cancer can be suppressed by miR-30d-mediated inhibition of USP22, provides a promising therapeutic target for thyroid cancer treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jing Wang ◽  
Lihui Zhang ◽  
Ting Wang ◽  
Caige Li ◽  
Lijing Jiao ◽  
...  

Objective. To elucidate the role of microRNA-576 (miRNA-576) in alleviating the deterioration of atherosclerosis (AS) through downregulating krüpple-like factor 5 (KLF5). Materials and Methods. The AS model in mice was first constructed. Body weight, inflammation degrees, blood lipid, and relative levels of KLF5, miRNA-576, caspase-3, and bcl-2 in AS mice and control mice were compared. Dual-luciferase reporter gene assay was performed to evaluate the binding between miRNA-576 and KLF5. RAW264.7 cells were treated with 200 mg/L ox-LDL for establishing in vitro high-fat model. Regulatory effects of miRNA-576/KLF5 on relative levels of β-catenin and inflammatory factors in RAW264.7 cells were explored. Results. Body weight was heavier in AS mice than in controls. Protein levels of KLF5 and caspase-3 were upregulated, while bcl-2 was downregulated in AS mice. In particular, protein level of KLF5 was highly expressed in aortic tissues of AS mice. TC and LDL increased, and HDL decreased in AS mice compared with controls. Inflammatory factor levels were markedly elevated in AS mice. KLF5 was verified to be the target gene binding miRNA-576. Overexpression of miRNA-576 downregulated KLF5, inflammatory factors, and β-catenin in ox-LDL-treated RAW264.7 cells. Regulatory effect of miRNA-576 on the release of inflammatory factors in RAW264.7 cells could be partially abolished by KLF5. Conclusions. miRNA-576 alleviates malignant progression of AS via downregulating KLF5.


2021 ◽  
Author(s):  
Rui-lin Li ◽  
Cheng-hui Fan ◽  
Shi-yu Gong ◽  
Sheng Kang

Abstract Background Searching for new molecular targets of ferroptosis is gradually becoming the focus in the field of cardiovascular disease research. This study was aimed to explore the biological function and molecular mechanism of ferroptosis of circRNA modulation in cardiomyocytes of myocardial infarction (MI).Method We explored the regulatory effect and molecular mechanism of LPR6 on myocardial cell ferroptosis by establishing a model of MI in vivo and in vitro, constructed the regulatory network of circRNA-miRNA-LRP6 by the bioinformatics analysis, and focused on the biological function and molecular mechanism of circRNA1615 regulating ferroptosis in MI by the overexpression or knockdown of circRNA1615, the RIP experiments, and double luciferase reporter gene assay.Results Ferrostatin-1(ferroptosis inhibitor) can improve the pathological process of MI; LRP6 was involved in the process of ferroptosis in cardiomyocytes; LRP6 deletion regulates ferroptosis in cardiomyocytes through autophagy; Screening and identification of circRNA1615 targets LRP6; circRNA1615 inhibits ferroptosis in cardiomyocytes; circRNA1615 regulates the expression of LRP6 through sponge adsorption of miR-152-3p, and then prevent LRP6-mediated autophagy-related ferroptosis in cardiomyocytes, finally regulate the pathological process of MI.Conclusions CircRNA1615 inhibits ferroptosis via modulation of autophagy by the miRNA152-3p/LRP6 molecular axis in cardiomyocytes of myocardial infarction.


2020 ◽  
Author(s):  
Hong-Guang Li ◽  
Heng-Jun Gao ◽  
Fang-Feng Liu ◽  
Jun Liu

Abstract Background: Even though earlier reports have revealed that abnormal spindle-like microcephaly associated (ASPM) exert essential roles in diverse malignancies, its relationship between specific microRNAs (miRNAs) in regulation of hepatocellular carcinoma (HCC) progression has never been elaborated. Methods: Bioinformatics analysis detected differentially expressed genes in HCC and normal. qRT-PCR was performed to detect expression of miR-26b-5p in HCC tissues and cells. HCC cells were transfected with plasmids and their proliferative ability and colony formation were detected with loss-of-function assay. The invasion of HCC cells was determined using Transwell assay. The expression of ASPM was detected by western blotting. Luciferase reporter gene assay was performed to detect the interaction between miR-26b-5p and ASPM. ASMP silencing cells were injected into mice to establish xenograft tumor model.Results: Herein, we proved that ASPM was upregulated in HCC and higher level of ASPM was significantly associated with worse survival in HCC patients. ASPM silencing restrained HCC cell proliferation, migration and invasion capacities in vitro. In vivo, downregulation of ASPM also suppressed HCC cells growth. Mechanistic analyses illustrated that ASPM was a directly target of miR-26b-5p. The expression of ASPM was negatively modulated by miR-26b-5p. Rescues assays displayed that miR-26b-5p inhibited HCC cells growth and invasion via modulating the expression of ASPM. Conclusions: Our work validated that miR-26b-5p restrained the aggressiveness of HCC cells through targeting ASPM.


2020 ◽  
Vol 49 (5) ◽  
pp. 462-473
Author(s):  
Jingwen Ma ◽  
Xiaohua Tao ◽  
Youming Huang

<b><i>Background:</i></b> Hemangioma (Hem) is a benign tumor commonly seen in infancy with a relative high morbidity. Human umbilical vein endothelial cell (HUVEC)-derived extracellular vesicles (EVs) are actively participated in Hem. Therefore, this study is designed to figure out the underlying mechanism of HUVEC-derived EVs in Hem. <b><i>Methods:</i></b> Initially, EVs were separated from HUVECs and identified. HUVEC-derived EVs in normoxia or hypoxia were then cultivated with Hem endothelial cells (HemECs) to test the proliferation, apoptosis, and migration of HemECs. Microarray analysis was performed to select microRNAs (miRs) with differential expression. miR-210 in hypoxia-induced HUVECs was silenced, and the relevant EVs were extracted and then co-cultured with HemECs to perform biological effect experiments. Then, the target relation between miR-210 and homeobox A9 (HOXA9) was identified by the dual luciferase reporter gene assay and RNA immunoprecipitation assay. Moreover, xenograft transplantation was also applied to confirm the in vitro experiments. <b><i>Results:</i></b> Hypoxia-induced HUVECs promoted release of EVs, which were absorbed by HemECs. Hypoxia-induced HUVEC-EVs promoted HemEC proliferation and migration and inhibited apoptosis. miR-210 from the hypoxia-induced HUVEC-EVs was highly expressed and promoted HemEC growth. Silencing miR-210 expression in the hypoxia-induced HUVEC-EVs suppresses Hem development in vivo. In addition, miR-210 targeted HOXA9. <b><i>Conclusion:</i></b> Silencing miR-210 in HUVEC-derived EVs could suppress Hem by targeting HOXA9. This investigation may provide novel insights for Hem treatment.


2020 ◽  
Author(s):  
Shengtao Sun ◽  
Yunxia Ma ◽  
Yinfeng Li

AbstractHepatic fibrosis is a pathological process resulting from liver damage, which leads to the extracellular matrix (ECM) proteins accumulation in the liver. Considering that microRNA (miR)-129-5p has a vital effect in the gene expression regulation about fibrosis through transcriptional profiling, this study speculated whether miR-129-5p had potential to influence the progression of hepatic fibrosis. The hepatic fibrosis rat models induced by C-C motif chemokine ligand 4 (CCl4) were established. The pathological changes of the liver tissues were assayed with hematoxylin-eosin (HE) staining. Subsequently, gain- and loss-of-function analysis with miR-129-5p antagomir or shRNA against PEG3 was conducted to further investigate the molecular regulatory mechanism of miR-129-5p, with detection of the expression of NF-κB signaling pathway-related proteins and apoptosis-related factors. The serum samples of rats were analyzed by serological index analysis. The targeting of miR-129-5p to PEG3 was verified by dual-luciferase reporter gene assay. The detection of apoptosis in rats was measured by TUNEL staining. MiR-129-5p was poorly-expressed and PEG3 was highly-expressed in hepatic fibrosis. miR-129-5p could reduce the expression of PEG3. Next, upregulated miR-129-5p or downregulated PEG3 led to less obvious histological changes of liver cirrhosis and lowered apoptosis rate. Further, miR-129-5p regulated the activation of NF-κB signaling pathway via PEG3. The hepatic fibrosis induced by CCl4 can be reversed by upregulated miR-129-5p or downregulated PEG3 expression.


2020 ◽  
Vol 20 (6) ◽  
pp. 715-723
Author(s):  
Natarajan Nandakumar ◽  
Pushparathinam Gopinath ◽  
Jacob Gopas ◽  
Kannoth M. Muraleedharan

Background: The authors investigated the NF-κB inhibitory role of three Benzisothiazolone (BIT) derivatives (1, 2 and 3) in Hodgkin’s Lymphoma cells (L428) which constitutively express activated NF-κB. All three compounds showed dose-dependent NF-κB inhibition (78.3, 70.7 and 34.6%) in the luciferase reporter gene assay and were found cytotoxic at IC50 values of 3.3μg/ml, 4.35μg/ml and 13.8μg/ml, respectively by the XTT assay. BIT 1and BIT 2 (but not BIT 3) suppressed both NF-κB subunits p50 and p65 in cytoplasmic and nuclear extracts in a concentration-dependent manner. Furthermore, BIT 1 showed a moderate synergistic effect with the standard chemotherapy drugs etoposide and doxorubicin, whereas BIT 2 and 3 showed a moderate additive effect to antagonistic effect. Cisplatin exhibited an antagonist effect on all the compounds tested under various concentrations, except in the case of 1.56μg/ml of BIT 3 with 0.156μg/ml of cisplatin. The compounds also inhibited the migration of adherent human lung adenocarcinoma cells (A549) in vitro. We conclude that especially BIT 1 and BIT 2 have in vitro anti-inflammatory and anti-cancer activities, which can be further investigated for future potential therapeutic use. Methods: Inspired by the electrophilic sulfur in Nuphar alkaloids, monomeric and dimeric benzisothiazolones were synthesized from dithiodibenzoic acid and their NF-κB inhibitory role was explored. NF-κB inhibition and cytotoxicity of the synthesized derivatives were studied using luciferase reporter gene assay and XTTassay. Immunocytochemistry studies were performed using L428 cells. Cell migration assay was conducted using the A549 cell line. L428 cells were used to conduct combination studies and the results were plotted using CompuSyn software. Results: Benzisothiazolone derivatives exhibited cytotoxicity in Hodgkin’s Lymphoma cells through NF-κB inhibition. Potent compounds showed suppression of both NF-κB subunits p50 and p65 in a concentrationdependent manner, both in cytoplasmic and nuclear extracts. Combination studies suggest that benzisothiazolone derivatives possess a synergistic effect with etoposide and doxorubicin. Furthermore, the compounds also inhibited the migration of A549 cells. Conclusion: Benzisothiazolones bearing one or two electrophilic sulfur atoms as part of the heterocyclic framework exhibited cytotoxicity in Hodgkin’s Lymphoma cells through NF-κB inhibition. In addition, these derivatives also exhibited a synergistic effect with etoposide and doxorubicin along with the ability to inhibit the migration of A549 cells. Our study suggests that BIT-based new chemical entities could lead to potential anticancer agents.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 11-26
Author(s):  
Maike Busch ◽  
Natalia Miroschnikov ◽  
Jaroslaw Thomas Dankert ◽  
Marc Wiesehöfer ◽  
Klaus Metz ◽  
...  

BACKGROUND: Retinoblastoma (RB) is the most common childhood eye cancer. Chemotherapeutic drugs such as etoposide used in RB treatment often cause massive side effects and acquired drug resistances. Dysregulated genes and miRNAs have a large impact on cancer progression and development of chemotherapy resistances. OBJECTIVE: This study was designed to investigate the involvement of retinoic acid receptor alpha (RARα) in RB progression and chemoresistance as well as the impact of miR-138, a potential RARα regulating miRNA. METHODS: RARα and miR-138 expression in etoposide resistant RB cell lines and chemotherapy treated patient tumors compared to non-treated tumors was revealed by Real-Time PCR. Overexpression approaches were performed to analyze the effects of RARα on RB cell viability, apoptosis, proliferation and tumorigenesis. Besides, we addressed the effect of miR-138 overexpression on RB cell chemotherapy resistance. RESULTS: A binding between miR-138 and RARα was shown by dual luciferase reporter gene assay. The study presented revealed that RARα is downregulated in etoposide resistant RB cells, while miR-138 is endogenously upregulated. Opposing RARα and miR-138 expression levels were detectable in chemotherapy pre-treated compared to non-treated RB tumor specimen. Overexpression of RARα increases apoptosis levels and reduces tumor cell growth of aggressive etoposide resistant RB cells in vitro and in vivo. Overexpression of miR-138 in chemo-sensitive RB cell lines partly enhances cell viability after etoposide treatment. CONCLUSIONS: Our findings show that RARα acts as a tumor suppressor in retinoblastoma and is downregulated upon etoposide resistance in RB cells. Thus, RARα may contribute to the development and progression of RB chemo-resistance.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Zhiyuan Lu ◽  
Dawei Wang ◽  
Xuming Wang ◽  
Jilong Zou ◽  
Jiabing Sun ◽  
...  

Abstract Background More and more studies have confirmed that miRNAs play an important role in maintaining bone remodeling and bone metabolism. This study investigated the expression level of miR-206 in the serum of osteoporosis (OP) patients and explored the effect and mechanism of miR-206 on the occurrence and development of osteoporosis. Methods 120 postmenopausal women were recruited, including 63 cases with OP and 57 women without OP. The levels of miR-206 were determined by qRT-PCR technology. Spearman correlation coefficient was used to evaluate the correlation of miR-206 with bone mineral density (BMD). An ROC curve was used to evaluate the diagnostic value of miR-206 in osteoporosis. The effects of miR-206 on cell proliferation and cell apoptosis of hFOBs were measured by CCK-8 assay and flow cytometry, respectively. Luciferase reporter gene assay was used to confirm the interaction of miR-206 and the 3′UTR of HDAC4. Results Serum miR-206 had low expression level in osteoporosis patient group compared with control group. The expression level of serum miR-206 had diagnostic value for osteoporosis, and the serum miR-206 levels were positively correlated with BMD. The down-regulated miR-206 could inhibit cell proliferation and promote cell apoptosis. Luciferase analysis indicated that HDAC4 was the target gene of miR-206. Conclusions MiR-206 could be used as a new potential diagnostic biomarker for osteoporosis, and in in vitro cell experiments, miR-206 may regulate osteoblast cell proliferation and apoptosis by targeting HDAC4.


2021 ◽  
Vol 20 ◽  
pp. 153303382098011
Author(s):  
Junjun Shu ◽  
Ling Xiao ◽  
Sanhua Yan ◽  
Boqun Fan ◽  
Xia Zou ◽  
...  

Objective: Ovarian cancer (OC) ranks one of the most prevalent fatal tumors of female genital organs. Aberrant promoter methylation triggers changes of microRNA (miR)-375 in OC. Our study aimed to evaluate the mechanism of methylated miR-375 promoter region in OC cell malignancy and to seek the possible treatment for OC. Methods: miR-375 promoter methylation level in OC tissues and cells was detected. miR-375 expression in OC tissues and cell lines was compared with that in demethylated cells. Role of miR-375 in OC progression was measured. Dual-luciferase reporter gene assay was utilized to verify the targeting relationship between miR-375 and Yes-associated protein 1 (YAP1). Then, Wnt/β-catenin pathway-related protein expression was tested. Moreover, xenograft transplantation was applied to confirm the in vitro experiments. Results: Highly methylated miR-375 was seen in OC tissues and cell lines, while its expression was decreased as the promoter methylation increased. Demethylation in OC cells brought miR-375 back to normal level, with obviously declined cell invasion, migration and viability and improved apoptosis. Additionally, miR-375 targeted YAP1 to regulate the Wnt/β-catenin pathway protein expression. Overexpressed YAP1 reversed the protein expression, promoted cell invasion, migration and viability while reduced cell apoptosis. Overexpressed miR-375 in vivo inhibited OC progression. Conclusion: Our study demonstrated that demethylated miR-375 inhibited OC growth by targeting YAP1 and downregulating the Wnt/β-catenin pathway. This investigation may offer novel insight for OC treatment.


Sign in / Sign up

Export Citation Format

Share Document