scholarly journals Sox17 modulates Wnt3A/β-catenin-mediated transcriptional activation of the Lef-1 promoter

2010 ◽  
Vol 299 (5) ◽  
pp. L694-L710 ◽  
Author(s):  
Xiaoming Liu ◽  
Meihui Luo ◽  
Weiliang Xie ◽  
James M. Wells ◽  
Michael J. Goodheart ◽  
...  

Wnt/β-catenin-dependent activation of lymphoid enhancer factor 1 (Lef-1) plays an important role in numerous developmental processes. In this context, transcription of the Lef-1 gene is increased by Wnt-mediated TCF4/β-catenin activation on the Lef-1 promoter through mechanisms that remain poorly defined. In mouse airway submucosal gland progenitor cells, Wnt3A transiently induces Lef-1 gene expression, and this process is required for epithelial cell proliferation and glandular morphogenesis. In the present study, we sought to identify additional candidate transcriptional regulators of the Lef-1 gene during glandular morphogenesis. To this end, we found that Sox17 expression is dramatically downregulated in early glandular progenitor cells that induce Lef-1 expression. Wnt stimulation of undifferentiated primary airway epithelial cells induced similar changes in Sox17 and Lef-1 expression. Reporter assays revealed that ectopic expression of Sox17 suppresses Wnt3A/β-catenin activation of the Lef-1 promoter in cell lines. EMSA and ChIP analyses defined several Sox17- and TCF4-binding sites that collaborate in transcriptional control of the Lef-1 promoter. More specifically, Sox17 bound to four sites in the Lef-1 promoter, either directly or indirectly through TCF complexes. The DNA- or β-catenin-binding domains of Sox17 controlled context-specific binding of Sox17/TCF complexes on the Lef-1 promoter. Combinatorial site-directed mutagenesis of Sox17- or TCF-binding sites in the Lef-1 promoter demonstrated that these sites control Wnt/β-catenin-mediated induction and/or repression. These findings demonstrate for the first time that Sox17 can directly regulate Wnt/β-catenin-dependent transcription of the Lef-1 promoter and reveal new context-dependent binding sites in the Lef-1 promoter that facilitate protein-protein interactions between Sox17 and TCF4.

Development ◽  
2000 ◽  
Vol 127 (17) ◽  
pp. 3695-3702 ◽  
Author(s):  
X. Yang ◽  
M. van Beest ◽  
H. Clevers ◽  
T. Jones ◽  
D.A. Hursh ◽  
...  

Drosophila T cell factor (dTcf) mediates transcriptional activation in the presence of Wingless signalling and repression in its absence. Wingless signalling is required for the correct expression of decapentaplegic (dpp), a Transforming Growth Factor (beta) family member, in parasegments 3 and 7 of the Drosophila visceral mesoderm. Here we demonstrate that a dpp enhancer element, which directs expression of a reporter gene in the visceral mesoderm in a pattern indistinguishable from dpp, has two functional dTcf binding sites. Mutations that reduce or eliminate Wingless signalling abolish dpp reporter gene expression in parasegment 3 and reduce it in parasegment 7 while ectopic expression of Wingless signalling components expand reporter gene expression anteriorly in the visceral mesoderm. However, mutation of the dTcf binding sites in the dpp enhancer results in ectopic expression of reporter gene expression throughout the visceral mesoderm, with no diminution of expression in the endogenous sites of expression. These results demonstrate that the primary function of dTcf binding to the dpp enhancer is repression throughout the visceral mesoderm and that activation by Wingless signalling is probably not mediated via these dTcf binding sites to facilitate correct dpp expression in the visceral mesoderm.


1990 ◽  
Vol 10 (3) ◽  
pp. 887-897 ◽  
Author(s):  
A R Buchman ◽  
R D Kornberg

ABFI (ARS-binding protein I) is a yeast protein that binds specific DNA sequences associated with several autonomously replicating sequences (ARSs). ABFI also binds sequences located in promoter regions of some yeast genes, including DED1, an essential gene of unknown function that is transcribed constitutively at a high level. ABFI was purified by specific binding to the DED1 upstream activating sequence (UAS) and was found to recognize related sequences at several other promoters, at an ARS (ARS1), and at a transcriptional silencer (HMR E). All ABFI-binding sites, regardless of origin, provided weak UAS function in vivo when examined in test plasmids. UAS function was abolished by point mutations that reduced ABFI binding in vitro. Analysis of the DED1 promoter showed that two ABFI-binding sites combine synergistically with an adjacent T-rich sequence to form a strong constitutive activator. The DED1 T-rich element acted synergistically with all other ABFI-binding sites and with binding sites for other multifunctional yeast activators. An examination of the properties of sequences surrounding ARS1 left open the possibility that ABFI enhances the initiation of DNA replication at ARS1 by transcriptional activation.


2005 ◽  
Vol 187 (13) ◽  
pp. 4430-4443 ◽  
Author(s):  
Deborah M. Ramsey ◽  
Patricia J. Baynham ◽  
Daniel J. Wozniak

ABSTRACT Mucoid variants of the opportunistic pathogen Pseudomonas aeruginosa produce the exopolysaccharide alginate and colonize the respiratory tracts of cystic fibrosis patients. The genes encoding the alginate biosynthetic enzymes are clustered in a single operon, which is under tight transcriptional control. One essential activator of the alginate operon is AlgZ, a proposed ribbon-helix-helix DNA binding protein that shares 30% amino acid identity with the Mnt repressor of Salmonella enterica serovar Typhimurium bacteriophage P22. In the current study, we examined the role of AlgZ as an autoregulator. Using single-copy algZ-lacZ transcription fusions, an increase in algZ transcription was observed in an algZ mutant compared to the isogenic wild-type strain, suggesting that AlgZ may have an additional role as a repressor. To identify the AlgZ binding site, overlapping regions upstream of algZ were incubated with AlgZ and analyzed by electrophoretic mobility shift assays. Specific binding activity was localized to a region spanning from 66 to 185 base pairs upstream of the algZ transcriptional start site. Two AlgZ binding sites were defined using copper-phenanthroline footprinting and deletion analyses, with one site centered at 93 base pairs and the other centered at 161 base pairs upstream of the algZ promoter. Deletion of both binding sites resulted in the loss of AlgZ binding. These results indicate that AlgZ represses algZ transcription, and this activity is mediated by multiple AlgZ-DNA interactions.


2005 ◽  
Vol 79 (9) ◽  
pp. 5594-5605 ◽  
Author(s):  
Mozhgan Rasti ◽  
Roger J. A. Grand ◽  
Joe S. Mymryk ◽  
Phillip H. Gallimore ◽  
Andrew S. Turnell

ABSTRACT The N-terminal region of the adenovirus (Ad) 12S E1A gene product targets several cellular proteins that are essential for the induction of S phase, cellular immortalization, cellular transformation, transcriptional repression, and transcriptional activation. The precise binding sites for these proteins, however, remain to be resolved. We therefore undertook an extensive site-directed mutagenesis approach to generate specific point mutants and to precisely map the binding sites for CBP, p300, TATA-binding protein (TBP), S4, S8, hGcn5, P/CAF, and Ran within the first 30 amino acids of the Ad5 12S E1A protein. We determined that although common residues within the N-terminal region can form partial binding sites for these proteins, point mutants were also generated that could discriminate between binding sites. These data indicate that AdE1A can target each of these proteins individually through distinct binding sites. It was evident, however, that the mutation of specific hydrophobic residues typically had the greatest effect upon AdE1A's ability to bind individual partners. Indeed, the mutation of L at positions 19 and 20 eliminated the ability of AdE1A to interact with any of the N-terminal binding proteins studied here. Interestingly, although TBP and S8 or CBP/p300 can exist as functional complexes, RNA interference revealed that the recruitment of either TBP, S8, or CBP/p300 to AdE1A was not dependent upon the expression of the other proteins. These data further indicate that AdE1A can target individual partner proteins in vivo and that it does not necessarily recruit these proteins indirectly as components of larger macromolecular complexes. Finally, we took advantage of the fine-mapping data to ascertain which proteins were targeted during the transformation process. Consistent with previous studies, CBP/p300 was found to be targeted by AdE1A during this process, although our data suggest that binding to other N-terminal proteins is also important for transformation.


Blood ◽  
1991 ◽  
Vol 78 (7) ◽  
pp. 1678-1684 ◽  
Author(s):  
GM Feldman ◽  
S Ruhl ◽  
M Bickel ◽  
DS Finbloom ◽  
DH Pluznik

Abstract Interleukin-4 (IL-4) is a T-cell-derived cytokine that regulates induction of proliferation of resting B cells and acts on various other immunocompetent cells, such as monocytes/macrophages and mast cells, as well as hematopoietic progenitor cells. On hematopoietic progenitor cells, cooperation with another cytokine (such as granulocyte- macrophage colony-stimulating factor [GM-CSF], G-CSF, IL-3, or IL-6) is required to render the cells responsive to IL-4. The present study was undertaken to determine if such an interaction entails induction of IL- 4 receptor (IL-4R) expression. Using the murine myeloid leukemia M1 cell line and mature, bone marrow (BM)-derived macrophages, we investigated whether IL-4R expression can be induced during differentiation. We detected no high-affinity IL-4R on the surface of either cell, but with exposure to IL-6 a significant induction of IL-4R was measured on both cell types by fluorescence-activated cell sorter analysis. This increase in IL-4R was first noted 6 hours after exposure of the cells to IL-6 and continued to increase up to 48 hours. By RNase protection analysis we found that the expression of IL-4R mRNA also appeared within 6 hours, continuing to increase up to 48 hours. Nuclear run-on assays showed that this increase in steady-state level of IL-4R mRNA results from a transcriptional activation of the IL-4R gene. These data suggest that regulation of IL-4R expression by IL-6 is under transcriptional control.


2000 ◽  
Vol 279 (6) ◽  
pp. L1058-L1065 ◽  
Author(s):  
Sean Jedrzkiewicz ◽  
Hidetoshi Nakamura ◽  
Eric S. Silverman ◽  
Andrew D. Luster ◽  
Naresh Mansharamani ◽  
...  

Eotaxin is an asthma-related C-C chemokine that is produced in response to interleukin-1β (IL-1β). We detected an increase in newly transcribed eotaxin mRNA in IL-1β-stimulated airway epithelial cells. Transient transfection assays using promoter-reporter constructs identified a region as essential for IL-1β-induced increases in eotaxin transcription. Using site-directed mutagenesis, we found that a nuclear factor-κB (NF-κB) site located 46 bp upstream from the transcriptional start site was both necessary and sufficient for IL-1β induction of reporter construct activity. Electrophoretic mobility shift assay demonstrated that IL-1β-stimulated airway epithelial cells produced p50 and p65 protein that bound this site in a sequence-specific manner. The functional importance of the NF-κB site was demonstrated by coexpression experiments in which increasing doses of p65 expression vector were directly associated with reporter activity exclusively in constructs with an intact NF-κB site ( r 2 = 0.97, P = 0.002). Moreover, IL-1β-induced increases in eotaxin mRNA expression are inhibited by inhibitors of NF-κB. Our findings implicate NF-κB and its binding sequence in IL-1β-induced transcriptional activation of the eotaxin gene.


2000 ◽  
Vol 20 (17) ◽  
pp. 6201-6211 ◽  
Author(s):  
Changlin Dou ◽  
Jun Lee ◽  
Bo Liu ◽  
Fang Liu ◽  
Joan Massague ◽  
...  

ABSTRACT The winged-helix (WH) BF-1 gene, which encodes brain factor 1 (BF-1) (also known as foxg1), is essential for the proliferation of the progenitor cells of the cerebral cortex. Here we show that BF-1-deficient telencephalic progenitor cells are more apt to leave the cell cycle in response to transforming growth factor β (TGF-β) and activin. We found that ectopic expression of BF-1 in vitro inhibits TGF-β mediated growth inhibition and transcriptional activation. Surprisingly, we found that the ability of BF-1 to function as a TGF-β antagonist does not require its DNA binding activity. Therefore, we investigated whether BF-1 can inhibit Smad-dependent transcriptional responses by interacting with Smads or Smad binding partners. We found that BF-1 does not interact with Smads. Because the identities of the Smad partners mediating growth inhibition by TGF-β are not clearly established, we examined a model reporter system which is known to be activated by activin and TGF-β through Smads and the WH factor FAST-2. We demonstrate that BF-1 associates with FAST-2. This interaction is dependent on the same region of protein which mediates its ability to interfere with the antiproliferative activity of TGF-β and with TGF-β-dependent transcriptional activation. Furthermore, the interaction of FAST-2 with BF-1 is mediated by the same domain which is required for FAST-2 to interact with Smad2. We propose a model in which BF-1 interferes with transcriptional responses to TGF-β by interacting with FAST-2 or with other DNA binding proteins which function as Smad2 partners and which have a common mode of interaction with Smad2.


Blood ◽  
1991 ◽  
Vol 78 (7) ◽  
pp. 1678-1684
Author(s):  
GM Feldman ◽  
S Ruhl ◽  
M Bickel ◽  
DS Finbloom ◽  
DH Pluznik

Interleukin-4 (IL-4) is a T-cell-derived cytokine that regulates induction of proliferation of resting B cells and acts on various other immunocompetent cells, such as monocytes/macrophages and mast cells, as well as hematopoietic progenitor cells. On hematopoietic progenitor cells, cooperation with another cytokine (such as granulocyte- macrophage colony-stimulating factor [GM-CSF], G-CSF, IL-3, or IL-6) is required to render the cells responsive to IL-4. The present study was undertaken to determine if such an interaction entails induction of IL- 4 receptor (IL-4R) expression. Using the murine myeloid leukemia M1 cell line and mature, bone marrow (BM)-derived macrophages, we investigated whether IL-4R expression can be induced during differentiation. We detected no high-affinity IL-4R on the surface of either cell, but with exposure to IL-6 a significant induction of IL-4R was measured on both cell types by fluorescence-activated cell sorter analysis. This increase in IL-4R was first noted 6 hours after exposure of the cells to IL-6 and continued to increase up to 48 hours. By RNase protection analysis we found that the expression of IL-4R mRNA also appeared within 6 hours, continuing to increase up to 48 hours. Nuclear run-on assays showed that this increase in steady-state level of IL-4R mRNA results from a transcriptional activation of the IL-4R gene. These data suggest that regulation of IL-4R expression by IL-6 is under transcriptional control.


2017 ◽  
Author(s):  
R. Murugan

AbstractWe show that nucleosomes can efficiently control the relative search times spent by transcription factors (TFs) on one- (1D) and three-dimensional (3D) diffusion routes towards locating their cognate sites on DNA. Our theoretical results suggest that the roadblock effects of nucleosomes are dependent on the relative position on DNA with respect to TFs and their cognate sites. Especially, nucleosomes exert maximum amount of hindrance to the 1D diffusion dynamics of TFs when they are positioned in between TFs and their cognate sites. The effective 1D diffusion coefficient (χTF) associated with the dynamics of TFs in the presence of nucleosome decreases with the free energy barrier (µ) associated the sliding dynamics of nucleosomes as . Subsequently the mean first passage time (ηL) that is required by TFs to scan L number of binding sites on DNA via 1D diffusion increases with μ as . When TFs move close to nucleosomes then they exhibit a typical sub-diffusive dynamics. Nucleosomes can enhance the search dynamics of TFs when TFs present in between nucleosomes and transcription factor binding sites (TFBS). The level of enhancement effects of nucleosomes seems to be much lesser than the level of retardation effects when nucleosomes present in between TFs and their cognate sites. These results suggest that nucleosome depleted regions around the cognate sites of TFs is mandatory for an efficient site-specific interactions of TFs with DNA. Remarkably the genome wide positioning pattern of TFs shows maximum at their specific binding sites and the positioning pattern of nucleosome shows minimum at the specific binding sites of TFs under in vivo conditions. This seems to be a consequence of increasing level of breathing dynamics of nucleosome cores and decreasing levels of fluctuations in the DNA binding domains of TFs as they move across TFBS. Since the extent of breathing dynamics of nucleosomes and fluctuations in the DBDs of TFs are directly linked with their respective 1D diffusion coefficients, the dynamics of TFs becomes slow as they approach their cognate sites so that TFs form tight site-specific complex. Whereas the dynamics of nucleosomes becomes rapid so that they pass through the cognate sites of TFs. Several in vivo datasets on genome wide positioning pattern of nucleosomes as well as TFs seem to agree well with our arguments. We further show that the condensed conformational state of DNA can significantly decrease the retarding effects of nucleosome roadblocks. The retarding effects of nucleosomes on the 1D diffusion dynamics of TFs can be nullified when the degree of condensation of the genomic DNA is such that it can permit a jump size associated with the dynamics of TFs beyond k > 150 bps.


1992 ◽  
Vol 12 (6) ◽  
pp. 2866-2871 ◽  
Author(s):  
W D Funk ◽  
D T Pak ◽  
R H Karas ◽  
W E Wright ◽  
J W Shay

Recent studies have demonstrated transcriptional activation domains within the tumor suppressor protein p53, while others have described specific DNA-binding sites for p53, implying that the protein may act as a transcriptional regulatory factor. We have used a reiterative selection procedure (CASTing: cyclic amplification and selection of targets) to identify new specific binding sites for p53, using nuclear extracts from normal human fibroblasts as the source of p53 protein. The preferred consensus is the palindrome GGACATGCCCGGGCATGTCC. In vitro-translated p53 binds to this sequence only when mixed with nuclear extracts, suggesting that p53 may bind DNA after posttranslational modification or as a complex with other protein partners. When placed upstream of a reporter construct, this sequence promotes p53-dependent transcription in transient transfection assays.


Sign in / Sign up

Export Citation Format

Share Document