Foxf1 haploinsufficiency reduces Notch-2 signaling during mouse lung development

2004 ◽  
Vol 286 (3) ◽  
pp. L521-L530 ◽  
Author(s):  
Vladimir V. Kalinichenko ◽  
Galina A. Gusarova ◽  
Il-Man Kim ◽  
Brian Shin ◽  
Helena M. Yoder ◽  
...  

The forkhead box (Fox) f1 transcription factor is expressed in the mouse splanchnic (visceral) mesoderm, which contributes to development of the liver, gallbladder, lung, and intestinal tract. Pulmonary hemorrhage and peripheral microvascular defects were found in approximately half of the newborn Foxf1(+/-) mice, which expressed low levels of lung Foxf1 mRNA [low- Foxf1(+/-) mice]. Microvascular development was normal in the surviving newborn high- Foxf1(+/-) mice, which compensated for pulmonary Foxf1 haploinsufficiency and expressed wild-type Foxf1 levels. To identify expression of genes regulated by Foxf1, we used Affymetrix microarrays to determine embryonic lung RNAs influenced by Foxf1 haploinsufficiency. Embryonic Foxf1(+/-) lungs exhibited diminished expression of hepatocyte growth factor receptor c-Met, myosin VI, the transcription factors SP-3, BMI-1, ATF-2, and glucocorticoid receptor, and cell cycle inhibitors p53, p21Cip1, retinoblastoma, and p107. Furthermore, Notch-2 signaling was decreased in embryonic Foxf1(+/-) lungs, as evidenced by significantly reduced levels of the Notch-2 receptor and the Notch-2 downstream target hairy enhancer of split-1. The severity of the Notch-2-signaling defect in 18-day postcoitus Foxf1(+/-) lungs correlated with Foxf1 mRNA levels. Disruption of pulmonary Notch-2 signaling continued in newborn low- Foxf1(+/-) mice, which died of lung hemorrhage and failed to compensate for Foxf1 haploinsufficiency. In contrast, in newborn high- Foxf1(+/-) lungs, Notch-2 signaling was restored to the level found in wild-type mice, which was associated with normal microvascular formation and survival. Foxf1 haploinsufficiency disrupted pulmonary expression of genes in the Notch-2-signaling pathway and resulted in abnormal development of lung microvasculature.

Development ◽  
1998 ◽  
Vol 125 (12) ◽  
pp. 2291-2302 ◽  
Author(s):  
G.M. Souza ◽  
S. Lu ◽  
A. Kuspa

When Dictyostelium cells starve they arrest their growth and induce the expression of genes necessary for development. We have identified and characterized a protein kinase, YakA, that is essential for the proper regulation of both events. Amino acid sequence and functional similarities indicate that YakA is a homolog of Yak1p, a growth-regulating protein kinase in S. cerevisiae. Purified YakA expressed in E. coli is able to phosphorylate myelin basic protein. YakA-null cells are smaller and their cell cycle is accelerated relative to wild-type cells. When starved, YakA-null cells fail to decrease the expression of the growth-stage gene cprD, and do not induce the expression of genes required for the earliest stages of development. YakA mRNA levels increase during exponential growth and reach a maximum at the point of starvation, consistent with a role in mediating starvation responses. YakA mRNA also accumulates when cells are grown in medium conditioned by cells grown to high density, suggesting that yakA expression is under the control of an extracellular signal that accumulates during growth. Expression of yakA from a conditional promoter causes cell-cycle arrest in nutrient-rich medium and promotes developmental events, such as the expression of genes required for cAMP signaling. YakA appears to regulate the transition from growth to development in Dictyostelium.


1993 ◽  
Vol 178 (2) ◽  
pp. 723-730 ◽  
Author(s):  
J L Chu ◽  
J Drappa ◽  
A Parnassa ◽  
K B Elkon

Fas is a cell surface protein of the tumor necrosis factor receptor, nerve growth factor receptor, CD40 family, and is involved in the control of lymphocyte apoptosis. A mutation in the Fas gene in MRL/lpr mice results in massive lymphoproliferation (lpr) and accelerated autoimmunity. To further study the nature of this defect, Fas mRNA expression was evaluated by reverse transcriptase polymerase chain reaction as well as by Northern blotting. These studies revealed that the wild-type Fas message was produced at approximately 10-fold lower levels in the lpr compared with the ++ substrain of MRL mice. In addition to the wild-type transcript, lpr mice also synthesized chimeric transcripts containing an insertion of the early retrotransposon (ETn). Molecular cloning and nucleotide sequencing of a Fas-ETn chimeric cDNA suggested that the striking reduction in wild-type Fas mRNA levels and the presence of aberrant transcripts in MRL/lpr mice are most likely explained by the insertion of the ETn retrotransposon into an intron of the Fas gene and induction of alternative splicing involving the 5' ETn long terminal repeat.


2019 ◽  
Author(s):  
David Lenin Ebenezer ◽  
Panfeng Fu ◽  
Yashaswin Krishnan ◽  
Mark Maienschein-Cline ◽  
Hong Hu ◽  
...  

Abstract BACKGROUND Pseudomonas aeruginosa (PA) is an opportunistic Gram-negative bacterium that causes serious life threatening and nosocomial infections including pneumonia. PA has the ability to alter host genome to facilitate its invasion, thus increasing the virulence of the organism. Sphingosine-1- phosphate (S1P), a bioactive lipid, is known to play a key role in facilitating infection. Sphingosine kinases (SPHK) 1&2 phosphorylate sphingosine to generate S1P in mammalian cells. We reported earlier that Sphk2-/- mice offered significant protection against lung inflammation, compared to wild type (WT) animals. Therefore, we profiled the differential expression of genes between the protected group of Sphk2-/- and the wild type controls to better understand the underlying protective mechanisms related to the Sphk2 deletion in lung inflammatory injury. Whole transcriptome shotgun sequencing (RNA-Seq) was performed on mouse lung tissue using NextSeq 500 sequencing system. RESULTS: Two-way analysis of variance (ANOVA) analysis was performed and differentially expressed genes following PA infection were identified using whole transcriptome of Sphk2-/- mice and their WT counterparts. Pathway (PW) enrichment analyses of the RNA seq data identified several signaling pathways that are likely to play a crucial role in pneumonia caused by PA such as those involved in: 1. Immune response to PA infection and NF-κB signal transduction; 2. PKC signal transduction; 3. Impact on epigenetic regulation; 4. Epithelial sodium channel pathway; 5. Mucin expression; and 6. Bacterial infection related pathways. Our genomic data suggests a potential role for SPHK2 in PA-induced pneumonia through elevated expression of inflammatory genes in lung tissue. Further, validation by RT-PCR on 10 differentially expressed genes showed 100% concordance in terms of vectoral changes as well as significant fold change. CONCLUSION: Using Sphk2-/- mice and differential gene expression analysis, we have shown here that S1P/SPHK2 signaling could play a key role in promoting PA pneumonia. The identified genes promote inflammation and suppress others that naturally inhibit inflammation and host defense. Thus, targeting SPHK2/S1P signaling in PA-induced lung inflammation could serve as a potential therapy to combat PA-induced pneumonia. Key Words: Pseudomonas aeruginosa; Lung infection; Sphingosine kinase 2; Sphingolipids; Gene Profiling; Resistance to Infection


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
David L. Ebenezer ◽  
Panfeng Fu ◽  
Yashaswin Krishnan ◽  
Mark Maienschein-Cline ◽  
Hong Hu ◽  
...  

Abstract Background Pseudomonas aeruginosa (PA) is an opportunistic Gram-negative bacterium that causes serious life threatening and nosocomial infections including pneumonia. PA has the ability to alter host genome to facilitate its invasion, thus increasing the virulence of the organism. Sphingosine-1- phosphate (S1P), a bioactive lipid, is known to play a key role in facilitating infection. Sphingosine kinases (SPHK) 1&2 phosphorylate sphingosine to generate S1P in mammalian cells. We reported earlier that Sphk2−/− mice offered significant protection against lung inflammation, compared to wild type (WT) animals. Therefore, we profiled the differential expression of genes between the protected group of Sphk2−/− and the wild type controls to better understand the underlying protective mechanisms related to the Sphk2 deletion in lung inflammatory injury. Whole transcriptome shotgun sequencing (RNA-Seq) was performed on mouse lung tissue using NextSeq 500 sequencing system. Results Two-way analysis of variance (ANOVA) analysis was performed and differentially expressed genes following PA infection were identified using whole transcriptome of Sphk2−/− mice and their WT counterparts. Pathway (PW) enrichment analyses of the RNA seq data identified several signaling pathways that are likely to play a crucial role in pneumonia caused by PA such as those involved in: 1. Immune response to PA infection and NF-κB signal transduction; 2. PKC signal transduction; 3. Impact on epigenetic regulation; 4. Epithelial sodium channel pathway; 5. Mucin expression; and 6. Bacterial infection related pathways. Our genomic data suggests a potential role for SPHK2 in PA-induced pneumonia through elevated expression of inflammatory genes in lung tissue. Further, validation by RT-PCR on 10 differentially expressed genes showed 100% concordance in terms of vectoral changes as well as significant fold change. Conclusion Using Sphk2−/− mice and differential gene expression analysis, we have shown here that S1P/SPHK2 signaling could play a key role in promoting PA pneumonia. The identified genes promote inflammation and suppress others that naturally inhibit inflammation and host defense. Thus, targeting SPHK2/S1P signaling in PA-induced lung inflammation could serve as a potential therapy to combat PA-induced pneumonia.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jae-Yeo Park ◽  
Younghwa Kim ◽  
Jee Ae Im ◽  
Seungkwon You ◽  
Hyangkyu Lee

Polyphenols have recently become an important focus of study in obesity research. Oligonol is an oligomerized polyphenol, typically comprised of catechin-type polyphenols from a variety of fruits, which has been found to exhibit better bioavailability and bioreactivity than natural polyphenol compounds. Here, we demonstrated that Oligonol inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression. During adipogenesis, Oligonol downregulated the mRNA levels of peroxisome proliferator-activated receptorγ(PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), andδ(C/EBPδ) in a dose-dependent manner and the expression of genes involved in lipid biosynthesis. The antiadipogenic effect of Oligonol appears to originate from its ability to inhibit the Akt and mammalian target of rapamycin (mTOR) signaling pathway by diminishing the phosphorylation of ribosomal protein S6 kinase (p70S6K), a downstream target of mTOR and forkhead box protein O1 (Foxo1). These results suggest that Oligonol may be a potent regulator of obesity by repressing major adipogenic genes through inhibition of the Akt signaling pathway, which induces the inhibition of lipid accumulation, ultimately inhibiting adipogenesis.


2019 ◽  
Author(s):  
David Lenin Ebenezer ◽  
Panfeng Fu ◽  
Yashaswin Krishnan ◽  
Mark Maienschein-Cline ◽  
Hong Hu ◽  
...  

Abstract BACKGROUND Pseudomonas aeruginosa (PA) is an opportunistic Gram-negative bacteria that causes serious life threatening and nosocomial infections including pneumonia. PA has the ability to alter host genome to facilitate its invasion thus increasing the virulence of the organism. Sphingosine-1 phosphate (S1P), a bioactive lipid is known to play a key role in facilitating infection. Sphingosine kinases (SPHK)1&2 phosphorylate sphingosine to generate S1P in mammalian cells. We reported earlier that Sphk2-/- mice offered significant protection against lung inflammation, compared to wild type (WT) animals. Therefore, we profiled the differential expression of genes between the protected group of Sphk2-/- and the wild type controls to better understand the underlying protective mechanisms Sphk2 deletion in lung inflammatory injury. Whole transcriptome shotgun sequencing (RNA seq) was performed on mouse lung tissue using NextSeq 500 sequencing system. RESULTS: Two-way ANOVA analysis was performed and differentially expressed genes following PA infection were identified using whole transcriptome of Sphk2-/- mice and their wild WT counterparts. Pathway (PW) enrichment analyses of the RNA seq data identified several signaling pathways that are likely to play a crucial role in pneumonia caused by PA such as those involved in: 1. Immune response to PA infection and NF-κB signal transduction; 2. PKC signal transduction; 3. Impact on epigenetic regulation; 4. Epithelial sodium channel pathway; 5. Mucin expression; and 6. Bacterial infection related pathways. Our data clearly suggests a role for SPHK2 in PA-induced pneumonia through elevated expression of inflammatory genes in lung tissue. Further, validation by RT-PCR on 10 differentially expressed genes showed 100% concordance in terms of vectoral changes, and 70% of genes showed concordance for significant fold change. CONCLUSION: Using Sphk2-/- mice and differential gene expression analysis, we have shown here that S1P/SPHK2 signaling plays a key role in promoting PA pneumonia. The identified genes promote inflammation, and suppress others that naturally inhibit inflammation and host defense. We therefore propose a key role for SPHK2/S1P signaling in PA-induced lung inflammation, and could serve as a potential therapeutic target to combat PA-induced pneumonia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lidan Liu ◽  
Chaim Z. Aron ◽  
Cullen M. Grable ◽  
Adrian Robles ◽  
Xiangli Liu ◽  
...  

AbstractLevels of intestinal toll-like receptor 4 (TLR4) impact inflammation in the neonatal gastrointestinal tract. While surfactant protein A (SP-A) is known to regulate TLR4 in the lung, it also reduces intestinal damage, TLR4 and inflammation in an experimental model of necrotizing enterocolitis (NEC) in neonatal rats. We hypothesized that SP-A-deficient (SP-A−/−) mice have increased ileal TLR4 and inflammatory cytokine levels compared to wild type mice, impacting intestinal physiology. We found that ileal TLR4 and proinflammatory cytokine levels were significantly higher in infant SP-A−/− mice compared to wild type mice. Gavage of neonatal SP-A−/− mice with purified SP-A reduced ileal TLR4 protein levels. SP-A reduced expression of TLR4 and proinflammatory cytokines in normal human intestinal epithelial cells (FHs74int), suggesting a direct effect. However, incubation of gastrointestinal cell lines with proteasome inhibitors did not abrogate the effect of SP-A on TLR4 protein levels, suggesting that proteasomal degradation is not involved. In a mouse model of experimental NEC, SP-A−/− mice were more susceptible to intestinal stress resembling NEC, while gavage with SP-A significantly decreased ileal damage, TLR4 and proinflammatory cytokine mRNA levels. Our data suggests that SP-A has an extrapulmonary role in the intestinal health of neonatal mice by modulating TLR4 and proinflammatory cytokines mRNA expression in intestinal epithelium.


2020 ◽  
Author(s):  
Jens Schittenhelm ◽  
Lukas Ziegler ◽  
Jan Sperveslage ◽  
Michel Mittelbronn ◽  
David Capper ◽  
...  

Abstract Background Fibroblast growth factor receptor (FGFR) inhibitors are currently used in clinical development. A subset of glioblastomas carries gene fusion of FGFR3 and transforming acidic coiled-coil protein 3. The prevalence of other FGFR3 alterations in glioma is currently unclear. Methods We performed RT-PCR in 101 glioblastoma samples to detect FGFR3-TACC3 fusions (“RT-PCR cohort”) and correlated results with FGFR3 immunohistochemistry (IHC). Further, we applied FGFR3 IHC in 552 tissue microarray glioma samples (“TMA cohort”) and validated these results in two external cohorts with 319 patients. Gene panel sequencing was carried out in 88 samples (“NGS cohort”) to identify other possible FGFR3 alterations. Molecular modeling was performed on newly detected mutations. Results In the “RT-PCR cohort,” we identified FGFR3-TACC3 fusions in 2/101 glioblastomas. Positive IHC staining was observed in 73/1024 tumor samples of which 10 were strongly positive. In the “NGS cohort,” we identified FGFR3 fusions in 9/88 cases, FGFR3 amplification in 2/88 cases, and FGFR3 gene mutations in 7/88 cases in targeted sequencing. All FGFR3 fusions and amplifications and a novel FGFR3 K649R missense mutation were associated with FGFR3 overexpression (sensitivity and specificity of 93% and 95%, respectively, at cutoff IHC score > 7). Modeling of these data indicated that Tyr647, a residue phosphorylated as a part of FGFR3 activation, is affected by the K649R mutation. Conclusions FGFR3 IHC is a useful screening tool for the detection of FGFR3 alterations and could be included in the workflow for isocitrate dehydrogenase (IDH) wild-type glioma diagnostics. Samples with positive FGFR3 staining could then be selected for NGS-based diagnostic tools.


2020 ◽  
Author(s):  
Maik Hintze ◽  
Sebastian Griesing ◽  
Marion Michels ◽  
Birgit Blanck ◽  
Lena Wischhof ◽  
...  

AbstractWe investigated the contribution of apoptosis-inducing factor (AIF), a key regulator of mitochondrial biogenesis, in supporting hair growth. We report that pelage abnormalities developed during hair follicle (HF) morphogenesis in Harlequin (Hq) mutant mice. Fragility of the hair cortex was associated with decreased expression of genes encoding structural hair proteins, though key transcriptional regulators of HF development were expressed at normal levels. Notably, Aifm1 (R200 del) knockin males and Aifm1(R200 del)/Hq females showed minor hair defects, despite substantially reduced AIF levels. Furthermore, we cloned the integrated ecotropic provirus of the Aifm1Hq allele. We found that its overexpression in wild-type keratinocyte cell lines led to down-regulation of HF-specific Krt84 and Krtap3-3 genes without altering Aifm1 or epidermal Krt5 expression. Together, our findings imply that pelage paucity in Hq mutant mice is mechanistically linked to severe AIF deficiency and is associated with the expression of retroviral elements that might potentially influence the transcriptional regulation of structural hair proteins.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Shasika Jayarathne ◽  
Mandana Pahlavani ◽  
Latha Ramalingam ◽  
Shane Scoggin ◽  
Naima Moustaid-Moussa

Abstract Objectives Brown adipose tissue (BAT) regulates energy balance through thermogenesis, in part via uncoupling protein -1 (UCP-1). White adipose tissue (WAT), namely subcutaneous adipose tissue (SAT) can convert to a beige/brite adipose tissue phenotype (browning) under thermogenic conditions such as cold. We previously reported that eicosapentaenoic acid (EPA) reduced obesity and glucose intolerance, and increased UCP-1 in BAT of B6 mice at ambient temperature (22°C); and these effects were attenuated at thermoneutral environment (28–30°C). We hypothesized that EPA exerts anti-obesity effects on SAT, including increased browning, adipocyte hypotrophy; and these effects require UCP-1. Methods Six-week-old B6 wild type (WT) and UCP-1 knock-out (KO) male mice were maintained at thermoneutral environment and fed high fat diet (HF) with or without 36 g/kg of AlaskOmega EPA-enriched fish oil (800 mg/g) for 14 weeks; and SAT was collected for histological, gene and protein analyses. SAT was also prepared from chow diet-fed WT and KO mice at ambient environment to prepare stroma vascular cells, which were differentiated into adipocytes, treated with 100uM EPA for 48 hours then harvested for mRNA and protein analyses. Results KO mice fed HF diets had the highest body weight (P < 0.05) among all groups. EPA reduced fat cell size in both WT and KO mice fed the EPA diet. mRNA levels of fibroblast growth factor-21 (FGF-21) were higher in SAT of WT mice fed EPA compared to WT mice fed HF (P < 0.05), with no differences between the KO genotype. KO mice fed HF diets had lower levels of UCP-3 in SAT compared to WT mice fed HF (P < 0.05), which was rescued only in the KO mice fed EPA (P < 0.05). UCP-1 protein levels were very low in SAT tissues, and UCP-2 mRNA levels were similar across all groups in SAT. Interestingly, EPA significantly (P < 0.05) increased mRNA expression of UCP-2, UCP-3 and FGF21 in differentiated SAT adipocytes from both WT and KO compared to control. Furthermore, UCP-1 mRNA levels were significantly higher in WT adipocytes treated with EPA, compared to non-treated cells (P < 0.05). Additional mechanistic studies are currently underway to further dissect adipose depot differences in EPA effects in WT vs. KO mice. Conclusions Our data suggest that EPA increases SAT browning, independently of UCP-1. Funding Sources NIH/NCCIH.


Sign in / Sign up

Export Citation Format

Share Document