scholarly journals HDAC8 inhibition ameliorates pulmonary fibrosis

2019 ◽  
Vol 316 (1) ◽  
pp. L175-L186 ◽  
Author(s):  
Shigeki Saito ◽  
Yan Zhuang ◽  
Takayoshi Suzuki ◽  
Yosuke Ota ◽  
Marjorie E. Bateman ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a fibroproliferative lung disease, and fibroblast-myofibroblast differentiation (FMD) is thought to be a key event in the pathogenesis of IPF. Histone deacetylase-8 (HDAC8) has been shown to associate with α-smooth muscle actin (α-SMA; a marker of FMD) and regulates cell contractility in vascular smooth muscle cells. However, the role of HDAC8 in FMD or pulmonary fibrosis has never been reported. This study investigated the role of HDAC8 in pulmonary fibrosis with a focus on FMD. We observed that HDAC8 expression was increased in IPF lung tissue as well as transforming growth factor (TGF)β1-treated normal human lung fibroblasts (NHLFs). Immunoprecipitation experiments revealed that HDAC8 was associated with α-SMA in TGFβ1-treated NHLFs. HDAC8 inhibition with NCC170 (HDAC8-selective inhibitor) repressed TGFβ1-induced fibroblast contraction and α-SMA protein expression in NHLFs cultured in collagen gels. HDAC8 inhibition with HDAC8 siRNA also repressed TGFβ1-induced expression of profibrotic molecules such as fibronectin and increased expression of antifibrotic molecules such as peroxisome proliferator-activated receptor-γ (PPARγ). Chromatin immunoprecipitation quantitative PCR using an antibody against H3K27ac (histone H3 acetylated at lysine 27; a known HDAC8 substrate and a marker for active enhancers) suggested that HDAC8 inhibition with NCC170 ameliorated TGFβ1-induced loss of H3K27ac at the PPARγ gene enhancer. Furthermore, NCC170 treatment significantly decreased fibrosis measured by Ashcroft score as well as expression of type 1 collagen and fibronectin in bleomycin-treated mouse lungs. These data suggest that HDAC8 contributes to pulmonary fibrosis and that there is a therapeutic potential for HDAC8 inhibitors to treat IPF as well as other fibrotic lung diseases.

Pharmacology ◽  
2019 ◽  
Vol 104 (5-6) ◽  
pp. 368-376 ◽  
Author(s):  
Hao Jiao ◽  
Jieqiong Song ◽  
Xia Sun ◽  
Dong Sun ◽  
Ming Zhong

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease with a high mortality and poor prognosis. Transforming growth factor (TGF)-β plays crucial roles in the pathogenesis of IPF. To investigate the role of sodium arsenite (SA) on fibroblast differentiation and pulmonary fibrosis, we checked the effects of SA on TGF-β-induced normal human lung fibroblasts (NHLFs) differentiation, and the anti-fibrotic effect of SA on bleomycin (BLM)-induced pulmonary fibrosis in mouse. SA treatment significantly inhibits α-smooth muscle actin and fibronectin (FN) expression in TGF-β treated NHLFs; and SA also inhibits TGF-β stimulated expression of NADPH oxidase 4 and accumulation of intracellular reactive oxygen species. TGF-β-induced the phosphorylation of ERK and Smad3 were also blocked by SA. The administration of SA (IP) suppressed BLM-induced lung fibrosis characterized as the inhibition of collagen deposition, TGF-β accumulation in bronchoalveolar lavage fluid, and the expression of FN and collagen 1a2 in lung tissue. This study revealed that SA inhibits TGF-β-induced lung fibroblast differentiation and BLM-induced pulmonary fibrosis in mice, suggesting that SA could be a potential therapeutic approach to IPF.


2018 ◽  
Vol 132 (14) ◽  
pp. 1565-1580 ◽  
Author(s):  
Yasunori Enomoto ◽  
Sayomi Matsushima ◽  
Kiyoshi Shibata ◽  
Yoichiro Aoshima ◽  
Haruna Yagi ◽  
...  

Although differentiation of lung fibroblasts into α-smooth muscle actin (αSMA)-positive myofibroblasts is important in the progression of idiopathic pulmonary fibrosis (IPF), few biomarkers reflecting the fibrotic process have been discovered. We performed microarray analyses between FACS-sorted steady-state fibroblasts (lineage (CD45, TER-119, CD324, CD31, LYVE-1, and CD146)-negative and PDGFRα-positive cells) from untreated mouse lungs and myofibroblasts (lineage-negative, Sca-1-negative, and CD49e-positive cells) from bleomycin-treated mouse lungs. Amongst several genes up-regulated in the FACS-sorted myofibroblasts, we focussed on Ltbp2, the gene encoding latent transforming growth factor-β (TGF-β) binding protein-2 (LTBP2), because of the signal similarity to Acta2, which encodes αSMA, in the clustering analysis. The up-regulation was reproduced at the mRNA and protein levels in human lung myofibroblasts induced by TGF-β1. LTBP2 staining in IPF lungs was broadly positive in the fibrotic interstitium, mainly as an extracellular matrix (ECM) protein; however, some of the αSMA-positive myofibroblasts were also stained. Serum LTBP2 concentrations, evaluated using ELISA, in IPF patients were significantly higher than those in healthy volunteers (mean: 21.4 compared with 12.4 ng/ml) and showed a negative correlation with % predicted forced vital capacity (r = −0.369). The Cox hazard model demonstrated that serum LTBP2 could predict the prognosis of IPF patients (hazard ratio for death by respiratory events: 1.040, 95% confidence interval: 1.026–1.054), which was validated using the bootstrap method with 1000-fold replication. LTBP2 is a potential prognostic blood biomarker that may reflect the level of differentiation of lung fibroblasts into myofibroblasts in IPF.


2019 ◽  
Vol 39 (5) ◽  
pp. 683-695 ◽  
Author(s):  
Y Chen ◽  
Q Zhang ◽  
Y Zhou ◽  
Z Yang ◽  
M Tan

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with high morbidity and mortality. miR-182-5p is overexpressed in several fibrosis-related diseases but its effect in pulmonary fibrosis has not been reported yet. To investigate the function of miR-182-5p in pulmonary fibrosis, we established bleomycin (BLM)-induced fibrotic mice model and transforming growth factor-β1 (TGF-β1)-treated human embryonic lung fibroblasts model. In this study, miR-182-5p was highly expressed in pulmonary tissues of BLM-induced fibrotic mice. The content of hydroxyproline and TGF-β1 was decreased by downregulating the expression of miR-182-5p, indicating that fibrosis was alleviated in mice treated with Lentivirus-anti-miR-182-5p.Quantification of fibrosis-related proteins demonstrated that downregulation of miR-182-5p inhibited the expression of profibrotic proteins (fibronectin, α-smooth muscle actin, p-Smad2/p-Smad3) as well as enhanced the level of Smad7. In vitro assays validated that miR-182-5p was induced by TGF-β1 with the function of promoting fibrosis. In dual-luciferase reporter assay, Smad7 was demonstrated to be negatively regulated by miR-182-5p. Moreover, the effect of knocking down miR-182-5p on inhibiting fibrosis was achieved by upregulating the expression of Smad7. Therefore, miR-182-5p can be regarded as a biomarker of IPF and its inhibition may be a promising therapeutic approach in treating IPF.


2021 ◽  
Vol 14 ◽  
Author(s):  
Hanaa Wanas ◽  
Zeinab El Shereef ◽  
Laila Rashed ◽  
Basma Emad Aboulhoda

Background: Idiopathic pulmonary fibrosis (IPF) is a serious disease with high mortality rate. Activation of transforming growth factor (TGF)-β1 production and signalling is considered the corner stone in the epithelial-mesenchymal transition (EMT) process. EMT plays a central role in development of fibrosis in many organs including the lungs. Activated platelets is an important source of TGF-β1 and play a pivotal role in EMT and fibrosis process. The antiplatelet, ticagrelor was previously found to inhibit the EMT in different types of cancer cells, but its ability to serve as an anti-pulmonary fibrosis (PF) agent was not previously investigated. Objective: In this study, we aim to investigate the potential ability of ticagrelor to ameliorate bleomycin-induced fibrosis in rats. Methods: PF was induced in rats by intratracheal BLM at a dose of 3 mg/kg. The effect of daily daily 20 mg/kg oral ticagrelor on different histological and biochemical parameters of fibrosis was investigated. Results: Our results revealed that ticagrelor can alleviate lung fibrosis. We found that ticagrelor inhibited TGF-β1 production and suppressed Smad3 activation and signaling pathway with subsequent inhibition of Slug and Snail. In addition, ticagrelor antagonized PI3K/AKT/mTOR pathway signaling. Moreover, ticagrelor inhibited the EMT that revealed by its ability to up-regulate the epithelial markers as E-cadherin (E-cad) and to decrease the expression of the mesenchymal markers as vimentin (VIM) and alpha-smooth muscle actin (α-SMA). Conclusion: Our results suggest that the P2Y12 inhibitor, ticagrelor may have a therapeutic potential in reducing the progression of PF.


2005 ◽  
Vol 288 (6) ◽  
pp. L1146-L1153 ◽  
Author(s):  
Heather A. Burgess ◽  
Louis Eugene Daugherty ◽  
Thomas H. Thatcher ◽  
Heather F. Lakatos ◽  
Denise M. Ray ◽  
...  

Pulmonary fibrosis is a progressive life-threatening disease for which no effective therapy exists. Myofibroblasts are one of the key effector cells in pulmonary fibrosis and are the primary source of extracellular matrix production. Drugs that inhibit the differentiation of fibroblasts to myofibroblasts have potential as antifibrotic therapies. Peroxisome proliferator-activated receptor (PPAR)-γ is a transcription factor that upon ligation with PPARγ agonists activates target genes containing PPAR response elements. PPARγ agonists have anti-inflammatory activities and may have potential as antifibrotic agents. In this study, we examined the abilities of PPARγ agonists to block two of the most important profibrotic activities of TGF-β on pulmonary fibroblasts: myofibroblast differentiation and production of excess collagen. Both natural (15d-PGJ2) and synthetic (ciglitazone and rosiglitazone) PPARγ agonists inhibited TGF-β-driven myofibroblast differentiation, as determined by α-smooth muscle actin-specific immunocytochemistry and Western blot analysis. PPARγ agonists also potently attenuated TGF-β-driven type I collagen protein production. A dominant-negative PPARγ partially reversed the inhibition of myofibroblast differentiation by 15d-PGJ2 and rosiglitazone, but the irreversible PPARγ antagonist GW-9662 did not, suggesting that the antifibrotic effects of the PPARγ agonists are mediated through both PPARγ-dependent and independent mechanisms. Thus PPARγ agonists have novel and potent antifibrotic effects in human lung fibroblasts and may have potential for therapy of fibrotic diseases in the lung and other tissues.


2020 ◽  
Vol 55 (6) ◽  
pp. 1901346 ◽  
Author(s):  
Pierre-Marie Boutanquoi ◽  
Olivier Burgy ◽  
Guillaume Beltramo ◽  
Pierre-Simon Bellaye ◽  
Lucile Dondaine ◽  
...  

BackgroundIdiopathic pulmonary fibrosis (IPF) is a devastating disease characterised by myofibroblast proliferation and abnormal extracellular matrix accumulation in the lungs. Transforming growth factor (TGF)-β1 initiates key profibrotic signalling involving the SMAD pathway and the small heat shock protein B5 (HSPB5). Tripartite motif-containing 33 (TRIM33) has been reported to negatively regulate TGF-β/SMAD signalling, but its role in fibrogenesis remains unknown. The objective of this study was to elucidate the role of TRIM33 in IPF.MethodsTRIM33 expression was assessed in the lungs of IPF patients and rodent fibrosis models. Bone marrow-derived macrophages (BMDM), primary lung fibroblasts and 3D lung tissue slices were isolated from Trim33-floxed mice and cultured with TGF-β1 or bleomycin (BLM). Trim33 expression was then suppressed by adenovirus Cre recombinase (AdCre). Pulmonary fibrosis was evaluated in haematopoietic-specific Trim33 knockout mice and in Trim33-floxed mice that received AdCre and BLM intratracheally.ResultsTRIM33 was overexpressed in alveolar macrophages and fibroblasts in IPF patients and rodent fibrotic lungs. Trim33 inhibition in BMDM increased TGF-β1 secretion upon BLM treatment. Haematopoietic-specific Trim33 knockout sensitised mice to BLM-induced fibrosis. In primary lung fibroblasts and 3D lung tissue slices, Trim33 deficiency increased expression of genes downstream of TGF-β1. In mice, AdCre-Trim33 inhibition worsened BLM-induced fibrosis. In vitro, HSPB5 was able to bind directly to TRIM33, thereby diminishing its protein level and TRIM33/SMAD4 interaction.ConclusionOur results demonstrate a key role of TRIM33 as a negative regulator of lung fibrosis. Since TRIM33 directly associates with HSPB5, which impairs its activity, inhibitors of TRIM33/HSPB5 interaction may be of interest in the treatment of IPF.


Author(s):  
Hyo Jae Kang ◽  
Kyung Jin Lee ◽  
Jisu Woo ◽  
Jiyeon Kim ◽  
Yun Kyu Kim ◽  
...  

AbstractPulmonary fibrosis is a progressive and lethal lung disease characterized by the proliferation and differentiation of lung fibroblasts and the accumulation of extracellular matrices. Since pulmonary fibrosis was reported to be associated with adenosine monophosphate-activated protein kinase (AMPK) activation, which is negatively regulated by cereblon (CRBN), we aimed to determine whether CRBN is involved in the development of pulmonary fibrosis. Therefore, we evaluated the role of CRBN in bleomycin (BLM)-induced pulmonary fibrosis in mice and in transforming growth factor-beta 1 (TGF-β1)-induced differentiation of human lung fibroblasts. BLM-induced fibrosis and the mRNA expression of collagen and fibronectin were increased in the lung tissues of wild-type (WT) mice; however, they were significantly suppressed in Crbn knockout (KO) mice. While the concentrations of TGF-β1/2 in bronchoalveolar lavage fluid were increased via BLM treatment, they were similar between BLM-treated WT and Crbn KO mice. Knockdown of CRBN suppressed TGF-β1-induced activation of small mothers against decapentaplegic 3 (SMAD3), and overexpression of CRBN increased it. TGF-β1-induced activation of SMAD3 increased α-smooth muscle actin (α-SMA) and collagen levels. CRBN was found to be colocalized with AMPKα1 in lung fibroblasts. CRBN overexpression inactivated AMPKα1. When cells were treated with metformin (an AMPK activator), the CRBN-induced activation of SMAD3 and upregulation of α-SMA and collagen expression were significantly suppressed, suggesting that increased TGF-β1-induced activation of SMAD3 via CRBN overexpression is associated with AMPKα1 inactivation. Taken together, these data suggest that CRBN is a profibrotic regulator and maybe a potential target for treating lung fibrosis.


Amino Acids ◽  
2021 ◽  
Author(s):  
Shaun Fell ◽  
Zhuo Wang ◽  
Andy Blanchard ◽  
Carmel Nanthakumar ◽  
Martin Griffin

AbstractThis study investigates the effects of a site-directed TG2-selective inhibitor on the lung myofibroblast phenotype and ECM deposition to elucidate TG2 as a novel therapeutic target in idiopathic pulmonary fibrosis (IPF)—an incurable progressive fibrotic disease. IPF fibroblasts showed increased expression of TG2, α smooth muscle actin (αSMA) and fibronectin (FN) with increased extracellular TG2 and transforming growth factor β1 (TGFβ1) compared to normal human lung fibroblasts (NHLFs) which do not express αSMA and express lower levels of FN. The myofibroblast phenotype shown by IPF fibroblasts could be reversed by selective TG2 inhibition with a reduction in matrix FN and TGFβ1 deposition. TG2 transduction or TGFβ1 treatment of NHLFs led to a comparable phenotype to that of IPF fibroblasts which was reversible following selective TG2 inhibition. Addition of exogenous TG2 to NHLFs also induced the myofibroblast phenotype by a mechanism involving TGFβ1 activation which could be ameliorated by selective TG2 inhibition. SMAD3-deleted IPF fibroblasts via CRISPR-cas9 genome editing, showed reduced TG2 protein levels following TGFβ1 stimulation. This study demonstrates a key role for TG2 in the induction of the myofibroblast phenotype and shows the potential for TG2-selective inhibitors as therapeutic agents for the treatment of fibrotic lung diseases like IPF.


Sign in / Sign up

Export Citation Format

Share Document