scholarly journals Aerobic exercise training-induced changes in serum C1q/TNF-related protein levels are associated with reduced arterial stiffness in middle-aged and older adults

2018 ◽  
Vol 314 (1) ◽  
pp. R94-R101 ◽  
Author(s):  
Natsuki Hasegawa ◽  
Shumpei Fujie ◽  
Naoki Horii ◽  
Masataka Uchida ◽  
Toshiyuki Kurihara ◽  
...  

Adiponectin regulates endothelial nitric oxide synthase in endothelial cells, and body fat loss by aerobic exercise training promotes adiponectin secretion. Recently, C1q/tumor necrosis factor-related proteins (CTRPs) have been identified as novel adipokines and are paralogs of adiponectin, but the association between exercise training-induced reduction of arterial stiffness and circulating CTRPs levels remains unclear. This study aimed to clarify whether the reduction of arterial stiffness in middle-aged and older adults is associated with the change in serum levels of CTRPs induced by exercise training. A total of 52 middle-aged and older participants were randomly divided into two groups: a training group ( n = 26) and a sedentary control group ( n = 26). Participants in the training group completed 8 wk of aerobic exercise training (60–70% peak oxygen uptake for 45 min, 3 days/wk). The reduction of percent whole body fat, abdominal visceral fat area, and carotid-femoral pulse-wave velocity (cfPWV) was significantly greater in the training group than in the control group ( P < 0.05). Moreover, the increase in serum adiponectin, CTRP3, and CTRP5 from baseline to 8 wk was significantly higher in the training group compared with the control group ( P < 0.05). Additionally, the training-induced change in cfPWV was negatively correlated with the training-induced change in serum adiponectin, CTRP3, and CTRP5 levels ( r = −0.51, r = −0.48, r = −0.42, respectively, P < 0.05), and increased plasma nitrite/nitrate level by exercise training was correlated only with adiponectin levels ( r = 0.41, P < 0.05). These results suggest that the exercise training-induced increase in serum CTRPs levels may be associated with the reduction of arterial stiffness in middle-aged and older adults.

2020 ◽  
Vol 41 (Supplement_1) ◽  
Author(s):  
S Fujie ◽  
N Hasegawa ◽  
K Sanada ◽  
T Hamaoka ◽  
S Maeda ◽  
...  

Abstract Funding Acknowledgements Supported by Grants-in-Aid for Scientific Research (#17H02182, #16K13059, M. Iemitsu; #18J01024, S. Fujie) Introduction Aging is well known to elevate risks of cardiovascular diseases. As a mechanism of these increased risks with aging, a reduction of nitric oxide (NO) production via augmented secretion of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NO synthesis is related. Habitual aerobic exercise has shown to improve secretory unbalance of endothelium-derived regulating factors with aging, such as increase in NO and decrease in ADMA, resulting in the reduction of arterial stiffness. However, the time course of improvement in secretory unbalance of NO and ADMA productions in response to exercise training in middle-aged and older adults remains unclear. Purpose This study aimed to determine the time course of changes in plasma nitrite/nitrate (NOx) and ADMA levels related to exercise-training effects of arterial stiffness in healthy middle-aged and older adults. Methods Thirty-two Japanese healthy middle-aged and older subjects (67 ± 1 years) were randomly divided into two groups: exercise intervention and sedentary controls. Subjects in the training group completed 8-week of aerobic exercise training (60-70% peak oxygen uptake [VO2peak] for 45 min, 3 days/week). We evaluated plasma NOx and ADMA concentrations and carotid-femoral pulse wave velocity (cfPWV) as an index of arterial stiffness, measured every 2 weeks for 8-week in the training group. Results cfPWV was gradually declined from baseline to 8-week and significantly decreased from baseline at weeks 6 (P &lt; 0.05) and 8 (P &lt; 0.01). Plasma NOx level was gradually elevated during exercise intervention and significantly increased from baseline at weeks 6 (P &lt; 0.05) and 8 (P &lt; 0.01). Interestingly, plasma ADMA level was significantly decreased at 8-week intervention (P &lt; 0.05). Furthermore, the exercise training-induced reduction in plasma ADMA level was negatively correlated with the change in plasma NOx level before and after the 8-week (r = -0.483, P &lt; 0.05). The exercise training-induced change in plasma ADMA concentration was positively correlated with training-induced change in cfPWV before and after the 8-week (r = 0.633, P &lt; 0.01). Additionally, there was a negative correlation between the changes in plasma NOx level and cfPWV before and after the 8-week (r = -0.642, P &lt; 0.05). Conclusions These results suggest that habitual aerobic exercise can normalize the secretory unbalance of NO and ADMA productions in 6 to 8 weeks, and these balance normalizations may be contributed to the reduction of arterial stiffness in the middle-aged and older adults.


Aging ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 1201-1212 ◽  
Author(s):  
Shumpei Fujie ◽  
Natsuki Hasegawa ◽  
Kiyoshi Sanada ◽  
Takafumi Hamaoka ◽  
Seiji Maeda ◽  
...  

Author(s):  
Nobuhiko AKAZAWA ◽  
Koichiro TANAHASHI ◽  
Keisei KOSAKI ◽  
Satoshi OIKAWA ◽  
Hiroshi KUMAGAI ◽  
...  

Author(s):  
Rakhbeer Singh Boparai ◽  
Rachel J Skow ◽  
Sauleha Farooq ◽  
Craig D Steinback ◽  
Margie H Davenport

We assessed the impact of a structured lower-limb aerobic exercise training intervention during pregnancy on brachial artery endothelial function, shear rate and patterns, and forearm blood flow and reactive hyperemia. Twenty-seven pregnant women were recruited and randomized into either a control group (n=11; 31.0 ± 0.7 years), or an exercise intervention group (n=16; 32.6 ± 0.9 years; NCT02948439). The exercise group completed 40 minutes of aerobic exercise (50-70% heart rate reserve) 3-4 times per week, between the second and third trimester of pregnancy. Endothelial function was assessed using flow-mediated dilation (FMD, normalized for shear stress) pre- (16-20 weeks) and post-intervention (34-36 weeks). The exercise training group experienced an attenuated increase in mean arterial pressure (MAP) relative to the control group (∆MAP exercise: +2± 2 mmHg vs. control: +7±3 mmHg; p=0.044) from pre- to post-intervention. % FMD change corrected for shear stress was not different between groups (p=0.460); however, the post occlusion mean flow rate (exercise: 437±32 mL/min vs. control: 364±35 mL/min; p=0.001) and post occlusion anterograde flow rate (exercise: 438±32 mL/min vs. control: 364±46 mL/min;p=0.001) were larger for the exercise training group compared to controls, post-intervention. Although endothelial function was not different between groups, we observed an increase in microcirculatory dilatory capacity, as suggested by the augmented reactive hyperemia in the exercise training group. Novelty: • Endothelial function was not altered with exercise training during pregnancy. • Exercise training did contribute to improved cardiovascular outcomes, which may have been associated with augmented reactive hyperaemia, indicative of increased microcirculatory dilatory capacity


Author(s):  
Yi-Pang Lo ◽  
Shang-Lin Chiang ◽  
Chia-Huei Lin ◽  
Hung-Chang Liu ◽  
Li-Chi Chiang

The presence of multimorbidity in middle-aged and older adults, which reduces their physical activity and quality of life, is a global health challenge. Exercise is one of the most important health behaviors that individuals can engage in. Previous studies have revealed that aerobic exercise training is beneficial for healthy middle-aged and older adults and those with various chronic diseases, but few studies have designed individualized aerobic exercise training for individuals with multimorbidity. Although individuals with multimorbidity are considerably less adherent to physical activity interventions, telephone-based motivational interviewing may help in strengthening motivation and promoting behavioral change for increasing physical activity and health-related physical fitness. This study aimed to examine whether a 12-week individualized aerobic exercise training in a rehabilitation center combined with telephone-based motivational interviewing is effective in promoting physical activity and health-related physical fitness among middle-aged and older adults with multimorbidity. A randomized controlled trial was conducted. Forty-three participants (aged > 40) were recruited and randomly assigned to the intervention group, comparison group, or control group. The participants’ physical activity and health-related physical fitness were assessed at baseline and at 12 weeks. The results indicated that after individualized aerobic exercise training combined with telephone-based motivational interviewing, the participants reported increased total physical activity (Fin = 481.3, p = 0.011), vigorous-intensity physical activity (Fin= 298.9, p = 0.007), dominant and nondominant hand grip (kg) (Fin = 1.96, p = 0.019; Fin = 2.19, p = 0.027, respectively), FEV1/FVC (Fin = 0.045, p = 0.043), VO2 max (ml/kg/min) (Fin = 5.30, p = 0.001), VO2 max predicted (%) (Fin = 21.6, p = 0.001), work (watts) (Fin = 22.5, p = 0.001), and anaerobic threshold (L/min) (Fin = 0.165, p = 0.011). Twelve weeks of individualized aerobic exercise training in the rehabilitation center combined with telephone-based motivational interviewing can increase the total physical activity, vigorous physical activity, and cardiorespiratory fitness of middle-aged and older adults with multimorbidity.


2020 ◽  
Vol 5 (12) ◽  
pp. 99-105
Author(s):  
Ermita I. Ibrahim Ilyas ◽  
Tyas Putri Utami ◽  
Minarma Siagian ◽  
Dewi Irawati S Santoso ◽  
Ani Retno Prijanti

To improve cardiovascular health, the WHO recommends 60 minutes of frequent moderate intensity physical activity in childhood. ACSM also recommends physical activity 30 minutes moderate activity or 30 minutes vigorous intensity, 3-4 times per week. However, limited data concerned in exercise starting from childhood effect to oxidative stress marker in vascular. Therefore the long-term effects of moderate intensity aerobic exercise training in early age on the cardiovascular, specifically on vascular stress oxidative marker needed to be studied. This study was conducted on male Wistar rats aged 3 weeks (60-70 grams), randomly allocated into 2 groups: 1) control group and 2) training group. Aerobic exercise training was conducted for 8 weeks on treadmill with age-dependent speeds. Training was intermittently 5 days each week for 20 minutes. Vascular oxidative stress marker was analyzed by measuring the level of malondialdehyde (MDA) and superoxide dismutase (SOD) activity on the abdominal aorta. Both the levels of MDA and SOD activity tended to increase in training group compared to the control group. The resuls of this study showed that long-term effects of moderate intensity aerobic exercise training in juvenile tended to increase the levels of MDA and specific SOD activity in the abdominal aorta tissues.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3498
Author(s):  
Ryota Kobayashi ◽  
Kenji Asaki ◽  
Takeo Hashiguchi ◽  
Hideyuki Negoro

The frequency of aerobic exercise training in reducing the increase in arterial stiffness during acute hyperglycemia, a risk factor for cardiovascular disease, is unknown. The aim of the study was to determine the aerobic exercise training frequency on arterial stiffness in a hyperglycemic state in middle-aged and elderly females. Twenty healthy elderly people were randomly assigned to a two-times-a-week (T2, n = 10) and four-times-a-week (T4, n = 10) exercise group. All participants exercised for 35 min per session, which consisted of jogging exercises with a heart rate intensity of 65%. Brachial-ankle (ba), and heart-brachial (hb) pulse wave velocity (PWV) were measured before, 4 and 8 weeks after intervention; before the oral ingestion of 75-g of glucose; and 30, 60, and 90 min after ingestion. The baPWV before and 4 weeks after the intervention increased in both groups (p < 0.05), but only increased 8 weeks after intervention in the T2 group. hbPWV was unchanged before, 4 and 8 weeks after intervention in both groups. These findings show that frequent aerobic exercise suppresses the increase in arterial stiffness following glucose intake. The results of this study can be used to support the implementation of exercise programs for middle-aged and elderly patients.


2015 ◽  
Vol 309 (10) ◽  
pp. H1642-H1647 ◽  
Author(s):  
Shumpei Fujie ◽  
Natsuki Hasegawa ◽  
Koji Sato ◽  
Satoshi Fujita ◽  
Kiyoshi Sanada ◽  
...  

Aging-induced arterial stiffening is reduced by aerobic exercise training, and elevated production of nitric oxide (NO) participates in this effect. Adropin is a regulator of endothelial NO synthase and NO release, and circulating adropin level decreases with age. However, the effect of habitual aerobic exercise on circulating adropin levels in healthy middle-aged and older adults remains unclear. We sought to determine whether serum adropin level is associated with exercise training-induced changes in arterial stiffness. First, in a cross-sectional study, we investigated the association between serum adropin level and both arterial stiffness and cardiorespiratory fitness in 80 healthy middle-aged and older subjects (65.6 ± 0.9 yr). Second, in an intervention study, we examined the effects of 8-wk aerobic exercise training on serum adropin level and arterial stiffness in 40 healthy middle-aged and older subjects (67.3 ± 1.0 yr) divided into two groups: aerobic exercise training and sedentary controls. In the cross-sectional study, serum adropin level was negatively correlated with carotid β-stiffness ( r = −0.437, P < 0.001) and positively correlated with plasma NOx level ( r = 0.493, P < 0.001) and cardiorespiratory fitness ( r = 0.457, P < 0.001). Serum adropin levels were elevated after the 8-wk aerobic exercise training intervention, and training-induced changes in serum adropin level were correlated with training-induced changes in carotid β-stiffness ( r = −0.399, P < 0.05) and plasma NOx level ( r = 0.623, P < 0.001). Thus the increase in adropin may participate in the exercise-induced reduction of arterial stiffness.


Author(s):  
Dong-Il Seo ◽  
Tae-Won Jun ◽  
Kae-Soon Park ◽  
Hyukki Chang ◽  
Wi-Young So ◽  
...  

Background:The purpose of this study was to examine the effects of combined exercise training on growth hormone (GH), insulin-like growth factor-1 (IGF-1), and metabolic-syndrome factors and determine whether the changes in GH and/or IGF-1 induced by exercise correlate to the metabolic-syndrome factors in healthy middle-aged women (50–65 years of age).Methods:The participants were randomly assigned into an aerobic-exercise training (walking + aerobics) group (AEG; n = 7), a combined-exercise training (walking + resistance training) group (CEG; n = 8), or a control group (CG; n = 7). Exercise sessions were performed 3 times per wk for 12 wk. The aerobic-exercise training consisted of walking and aerobics at 60–80% of heart-rate reserve, and the combined-exercise training consisted of walking and resistance exercise at 50–70% of 1-repetition maximum.Results:GH, percentage body fat, fasting glucose, systolic blood pressure, and waist circumference were significantly improved in CEG (p < .05). However, GH induced by exercise training showed no correlation with metabolic-syndrome factors. IGF-1 was not significantly increased in either AEG or CEG compared with CG.Conclusion:These results indicate that the combined-exercise training produced more enhancement of GH, body composition, and metabolic-syndrome factors than did aerobic-exercise training.


Sign in / Sign up

Export Citation Format

Share Document