Influence of thermal acclimation on membrane lipid composition of rainbow trout liver

1979 ◽  
Vol 236 (1) ◽  
pp. R91-R101 ◽  
Author(s):  
J. R. Hazel

Rainbow trout (Salmo gairdneri) acclimated to 5 degrees C possessed larger livers and less neutral lipid per gram of liver than 20 degrees C-acclimated animals; quantities of liver glycolipid, phospholipid, and cholesterol did not vary significantly with acclimation temperature. The relative proportions of phosphatidylethanolamine increased significantly following cold exposure, whereas the quantities of sphingomyelin and cardiolipin declined. For all phosphatides examined (phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, lysolecithin, cardiolipin, sphingomyelin) cold acclimation resulted in 1) an increase in the quantity of polyunsaturated fatty acids, 2) a reduction in the level of saturated fatty acids, and 3) little change in the total content of monoenes and dienes. The increased content of polyunsaturated fatty acids in choline and ethanolamine phosphatides following cold acclimation was confined to the 2-position and occurred at the expense of monoenes and dienes. The relative proportions of n - 3 fatty acids, and less frequently n - 6 fatty acids, increased in phosphatides of cold-acclimated trout, whereas the relative proportions of n - 9 fatty acids declined. These data suggest a preferential incorporation of fatty acids belonging to the linolenic acid family at reduced temperatures. Temperature-induced changes in the chemical composition of trout liver phospholipids counteracted the effects of acute temperature change on nonelectrolyte permeability of isolated liposomes.

1986 ◽  
Vol 43 (8) ◽  
pp. 1664-1667 ◽  
Author(s):  
J. M. McLeese ◽  
E. Don Stevens

Specific activity and kinetic constants of trypsin from the pyloric caeca of two strains of rainbow trout, Salmo gairdneri, were measured using α-N-benzoyl-DL-arginine-ρ-nitroaniline∙HCl No increase in activity was observed with cold acclimation, suggesting that cold acclimation induces no increase in trypsin concentration. The apparent Km for the substrate was independent of assay temperature over the physiological range in both strains, probably to maintain high rates of catalysis at higher temperatures when nutrient requirements are high. Strain A trout produced a trypsin with lower affinity on cold acclimation, but Strain B trout did not. The two strains differed in intestinal morphology as well as in the characteristics of their trypsins.


2020 ◽  
Vol 11 (2) ◽  
pp. 214-219
Author(s):  
L. L. Yuskiv ◽  
I. D. Yuskiv

The changes in total lipids, their fatty acid composition and the ratio of individual classes were established in tissues of the intestine, hepatopancreas and skeletal muscles of carp (Cyprinus carpio Linnaeus, 1758), with body weight 14.5–20.5 g, at different rates of invasion by Bothriocephalus acheilognathi (Yamaguti, 1934) helminth, which belongs to the family Bothriocephalidae, of the Pseudophyllidae order, of the Cestoda class. The examined carp was divided into three groups: first group of fish was free from intestinal helminths of B. acheilognathi (control); second group of fish was weakly infected with helminths (intensity of invasion is 1–3 helminths per fish); the third group of fish was highly infected (the invasion intensity is 4 worms and more per fish). Our results showed that fish infected with helminth B. acheilognathi compared to uninfected fish had reduced total lipid level in the gut due to phospholipids, triacylglycerols, and also lipids were characterized by lower content of linoleic, linolenic, arachidonic, penta- and hexanoic fatty acids; decrease in the level of unsaturated and increase in the content of saturated fatty acids, which leads to an increase of the saturation factor. During the infection of carp with B. acheilognathi in the hepatopancreas, the content of total lipids, structural lipids – phospholipids and reserve energy sources – triacylglycerols is probably reduced, and lipids are characterized by a high content of saturated fatty acids (С14:0, С16:0, С18:0) and lower content of unsaturated: arachidonic (С20:4), linolenic (С18:3) and linoleic acid (С18:2), which is associated with a decrease in the source for the synthesis of a number of polyunsaturated fatty acids, especially docosahexaenoic (С22:6). The total content of lipids, triacylglycerols, free fatty acids and phospholipids in skeletal muscle of carp during the Bothriocephalus invasion decreased and the content of free cholesterol, mono- and triacylglycerols increased. Helminth B. acheilognathi has the effect of reducing the total lipids of the skeletal muscle content of С18-, С20-, С22-polyunsaturated fatty acids and increasing the content of saturated (С14:0, С16:0, С18:0) and monounsaturated (С16:1, С18:1) fatty acids. The obtained results prove that the parasite B. acheilognathi in the intestine of the carp significantly affects the nutrition processes of the host depending on the intensity of the damage by helminths, which is accompanied by impaired lipid metabolism.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Goc ◽  
Aleksandra Niedzwiecki ◽  
Matthias Rath

AbstractThe strain SARS-CoV-2, newly emerged in late 2019, has been identified as the cause of COVID-19 and the pandemic declared by WHO in early 2020. Although lipids have been shown to possess antiviral efficacy, little is currently known about lipid compounds with anti-SARS-CoV-2 binding and entry properties. To address this issue, we screened, overall, 17 polyunsaturated fatty acids, monounsaturated fatty acids and saturated fatty acids, as wells as lipid-soluble vitamins. In performing target-based ligand screening utilizing the RBD-SARS-CoV-2 sequence, we observed that polyunsaturated fatty acids most effectively interfere with binding to hACE2, the receptor for SARS-CoV-2. Using a spike protein pseudo-virus, we also found that linolenic acid and eicosapentaenoic acid significantly block the entry of SARS-CoV-2. In addition, eicosapentaenoic acid showed higher efficacy than linolenic acid in reducing activity of TMPRSS2 and cathepsin L proteases, but neither of the fatty acids affected their expression at the protein level. Also, neither reduction of hACE2 activity nor binding to the hACE2 receptor upon treatment with these two fatty acids was observed. Although further in vivo experiments are warranted to validate the current findings, our study provides a new insight into the role of lipids as antiviral compounds against the SARS-CoV-2 strain.


2000 ◽  
Vol 70 (1) ◽  
pp. 51-61 ◽  
Author(s):  
L. O. W. McClintont ◽  
A. F. Carson

AbstractThis study investigated the efficiency of growth and the carcass characteristics of 24 Greyface (Border Leicester × Scottish Blackface), 24 Texel (12 purebred and 12 Texel × Texel-Greyface) and 24 Rouge (12 purebred and 12 Rouge × Rouge-Greyface) lambs finished on the same level of feeding. The efficiency of live-weight gain (kg/MJ) was higher in Greyface compared with Texel lambs (P< 0·01). The efficiency of empty body-weight gain (kg/MJ) was higher in Greyface (P< 0·01) and Rouge (P< 0·05) compared with Texel lambs. The efficiency of carcass gains (kg/MJ) tended to be higher in Greyface and Rouge compared with Texel lambs (P= 0·07). The efficiency of non-carcass component gains (kg/MJ) was also higher in Greyface compared with Texel lambs (P0·05). Carcass water, protein, lipid and ash gains did not vary significantly between the genotypes, however carcass energy gain tended to be higher in Greyface and Rouge compared with Texel lambs (P= 0·08). The relative proportions of water, protein, lipid and ash in carcass gains did not vary significantly between the genotypes. At the end of the experiment carcass water content was higher in Texel compared with Greyface lambs (P< 0·05) and carcass ash content was lower in Texel compared with Greyface (P< 0·01) and Rouge (P< 0·05) lambs. The concentration of saturated fatty acids was higher in Greyface compared with Rouge lambs (P< 0·001) and higher in Rouge compared with Texel lambs (P< 0·05). Monounsaturated fatty acid concentrations were higher in Rouge compared with Greyface lambs (P< 0·05) and higher in Texel compared with Rouge lambs (P< 0·001). Polyunsaturated fatty acid concentrations were higher in Rouge and Texel compared with Greyface lambs (P< 0·01). The ratio of n-6:n-3 fatty acids was lower in Rouge compared with Greyface lambs (P< 0·05).The efficiency of empty body gain was higher in male compared with female lambs (P< 0·05). Carcass water (P< 0·01) and protein (P< 0·05) gains were higher in male lambs. At the end of the experiment male carcasses contained a higher content of water (P< 0·05), protein (P< 0·01) and ash (P= 0·07), and a lower lipid (P< 0·05) and energy (P< 0·001) content. Carcass lipids from male lambs contained a higher concentration of polyunsaturated fatty acids (P< 0·001) and tended to contain a lower concentration of saturated fatty acids (P = 0·06).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamza Amine ◽  
Yacir Benomar ◽  
Mohammed Taouis

AbstractSaturated fatty acids such as palmitic acid promote inflammation and insulin resistance in peripheral tissues, contrasting with the protective action of polyunsaturated fatty acids such docosahexaenoic acid. Palmitic acid effects have been in part attributed to its potential action through Toll-like receptor 4. Beside, resistin, an adipokine, also promotes inflammation and insulin resistance via TLR4. In the brain, palmitic acid and resistin trigger neuroinflammation and insulin resistance, but their link at the neuronal level is unknown. Using human SH-SY5Yneuroblastoma cell line we show that palmitic acid treatment impaired insulin-dependent Akt and Erk phosphorylation whereas DHA preserved insulin action. Palmitic acid up-regulated TLR4 as well as pro-inflammatory cytokines IL6 and TNFα contrasting with DHA effect. Similarly to palmitic acid, resistin treatment induced the up-regulation of IL6 and TNFα as well as NFκB activation. Importantly, palmitic acid potentiated the resistin-dependent NFkB activation whereas DHA abolished it. The recruitment of TLR4 to membrane lipid rafts was increased by palmitic acid treatment; this is concomitant with the augmentation of resistin-induced TLR4/MYD88/TIRAP complex formation mandatory for TLR4 signaling. In conclusion, palmitic acid increased TLR4 expression promoting resistin signaling through TLR4 up-regulation and its recruitment to membrane lipid rafts.


Sign in / Sign up

Export Citation Format

Share Document