Mice deficient in oxytocin manifest increased saline consumption following overnight fluid deprivation
Male mice (9–13 mo of age) in which the gene for oxytocin (OT) had been deleted (OT −/−) were administered 0.5 M sodium chloride (NaCl) solution or tap water as a two-bottle choice test following overnight fluid deprivation (1600 to 1000 the following day). Compared with wild-type cohorts (OT +/+), OT-deficient mice ingested sevenfold greater amounts of saline in the first hour following reintroduction of fluids, P < 0.001, and fourfold greater amounts at the end of 6 h, P < 0.02. No significant difference in total water ingested was noted between the two genotypes at the end of either 1 or 6 h. If food deprivation accompanied the overnight fluid deprivation and food was reintroduced 1 h after the reintroduction of both water and saline, OT −/− mice still ingested greater amounts of saline, but not water, than OT +/+ mice at both 1 h, P < 0.001, and 6 h, P< 0.02. No differences were noted between genotypes in the daily intake of 0.5 M NaCl solution or water during a 3-day observation period before the overnight fluid deprivation. The volume of saline consumed in each 24-h observation period represented about one-tenth of the total fluids ingested in each genotype. We conclude that OT −/− mice display an enhanced salt appetite compared with OT +/+ mice when fluid deprived overnight. The salt appetite was only apparent in the presence of a perturbation such as fluid deprivation, which predisposes the animal to moderate hypovolemia. The observations support an inhibitory role for OT in the control of sodium appetite in mice.