Periodic variation in R-R intervals and cardiovascular autonomic regulation in young adult Syrian hamsters

2009 ◽  
Vol 296 (3) ◽  
pp. R610-R617 ◽  
Author(s):  
H. Mongue-Din ◽  
A. Salmon ◽  
M. Y. Fiszman ◽  
Y. Fromes

Several hamster strains are commonly used as models for cardiomyopathic phenotypes evolving toward heart failure. However, little is known about heart rate variability (HRV) in this species. Prolonged surface ECG recording, a prerequisite to HRV studies, can be obtained either by telemetry or by restraints. Here, we performed long time ECG recording using telemetry on young adult Syrian hamsters and we analyzed time series of interbeat intervals. Standard statistics showed that the mean of normal R-R intervals slightly increased with age, with standard deviation of normal R-R intervals remaining stable over time. However, time domain analysis using Poincaré plots revealed dynamic changes in the HRV. Analysis of frequency domains revealed that the ratio of spectral components (low frequency/high frequency) exhibited a maturation pattern. Thus refined analysis of HRV revealed a more complex pattern than common statistical analysis would translate. Unlike other rodents, hamsters display a great spontaneous variability of their heart rate. As the complexity canvas of HRV might be the consequence of extracardiac regulation factors, we assessed the sympathovagal balance in both time and frequency domain of heart rate. Pharmacological tests revealed that both sympathetic and vagal tones contribute to HRV in Syrian hamsters. Thus Syrian hamsters have a broad intrinsic HRV with large influences of the neurovegetative system. However, the influence of the previous beat seems to prevail over the autonomic oscillators. These animals present a high sensitivity to artificially altered cardiac regulation and might be great models for the diagnosis of early alterations in the HRV related to pathology. Therefore, Syrian hamsters represent a unique model for HRV studies.

Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Chris L Schaich ◽  
Hossam A Shaltout ◽  
Alex Kovach ◽  
Megan Grabenauer ◽  
Brian F Thomas ◽  
...  

Previous studies in obese individuals indicate higher circulating endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) than in lean counterparts. However, the association between plasma endocannabinoids and autonomic control of blood pressure and heart rate has not been assessed in obesity. In a sample of normotensive, obese older adults we analyzed plasma content of the endocannabinoids AEA and total AG using mass spectrometry and examined correlations with various indices of spontaneous sympathovagal activity. Spontaneous baroreflex sensitivity (BRS) for heart rate control was calculated by spectral analysis of arterial pressure (AP) time (Sequence [Seq] Up, Seq Down and Seq All) and frequency (low-frequency [LF] and high-frequency [HF] α) domains from continuous resting AP recordings. In addition, time domain analysis was used to calculate heart rate variability (HRV) and blood pressure variability, indices of cardiac vagal tone and vascular sympathetic tone, respectively. The sample included 8 males and 17 females with a mean age of 68.4 ± 0.6 years, a mean body mass index of 35.0 ± 0.8 kg/m 2 , and mean AP of 101.0 ± 2.2 mmHg. Across the complete sample, we report a significant inverse correlation between plasma AG content and HFα, an index of the vagally-mediated parasympathetic spontaneous BRS ( r = -0.50, P < 0.05). We further report a significant inverse correlation between plasma AG and the vagal spontaneous BRS (Seq Up) in males ( r = -0.87, P < 0.01) but not in females. However, in females but not males we found significant positive relationships between AEA and LFα, an index of sympathetic spontaneous BRS ( r = 0.49, P < 0.05), and AEA and HRV ( r = 0.50, P < 0.05). These results are consistent with a role for the endocannabinoid system to modulate autonomic control of the circulation in populations at risk for hypertension and cardiovascular disease, and suggest gender differences that have yet to be elucidated.


Author(s):  
Ovais K. Wadoo ◽  
Sheikh I. Sayeed ◽  
Mariya R. Tramboo

Background: Hypertension is a risk factor for the development of cardiovascular and cerebro-vascular diseases. Autonomic nervous system plays a crucial role in the development of hypertension. The integrity of autonomic modulation of heart rate is evaluated by analysing heart rate variability (HRV), which refers to oscillations in the intervals between consecutive heartbeats or R-R intervals. The present study was designed to analyse the indices of heart rate variability in the offsprings of hypertensive parents and off springs of normotensive parents to understand if there is any autonomic imbalance between the two groups.  Methods: The study was conducted in the Department of Physiology, Government Medical College, Srinagar. The test group consisted of 30 healthy normotensive subjects studying in 1st year of MBBS with hypertensive parents and the control group consisted of healthy normotensive of 1st year of MBBS with both parents normotensive. In time domain analysis the standard deviation of all normal-to-normal intervals {SDNN(ms)} was taken as index of overall HRV. Frequency domain analysis was done with respect to low frequency (LF) analysis and high frequency (HF) analysis. Low and high frequency power were expressed in normalized units.Results: The SDNN was reduced in cases but was not statistically significant. RMSSD was also reduced in cases though not statistically significant. LFnu was found to be significantly higher in cases. The HFnu was significantly reduced in cases. LF/HF ratio was found to be higher in cases and the difference was statistically significant.  Conclusions: Our study reveals that incidence of prehypertension and the risk of cardiovascular dysfunction in relation to sympathovagal imbalance is more in the off springs of hypertensive parents than in the off springs of normotensive parents. Sympathovagal imbalance in the form of increased sympathetic drive and decreased parasympathetic drive can lead to prehypertension in these genetically predisposed individuals.  


2010 ◽  
Vol 24 (2) ◽  
pp. 112-119 ◽  
Author(s):  
F. Riganello ◽  
A. Candelieri ◽  
M. Quintieri ◽  
G. Dolce

The purpose of the study was to identify significant changes in heart rate variability (an emerging descriptor of emotional conditions; HRV) concomitant to complex auditory stimuli with emotional value (music). In healthy controls, traumatic brain injured (TBI) patients, and subjects in the vegetative state (VS) the heart beat was continuously recorded while the subjects were passively listening to each of four music samples of different authorship. The heart rate (parametric and nonparametric) frequency spectra were computed and the spectra descriptors were processed by data-mining procedures. Data-mining sorted the nu_lf (normalized parameter unit of the spectrum low frequency range) as the significant descriptor by which the healthy controls, TBI patients, and VS subjects’ HRV responses to music could be clustered in classes matching those defined by the controls and TBI patients’ subjective reports. These findings promote the potential for HRV to reflect complex emotional stimuli and suggest that residual emotional reactions continue to occur in VS. HRV descriptors and data-mining appear applicable in brain function research in the absence of consciousness.


2014 ◽  
Vol 7 (6) ◽  
pp. 914-916 ◽  
Author(s):  
Didier Clarençon ◽  
Sonia Pellissier ◽  
Valérie Sinniger ◽  
Astrid Kibleur ◽  
Dominique Hoffman ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2022
Author(s):  
Benjamin Spetzler ◽  
Elizaveta V. Golubeva ◽  
Ron-Marco Friedrich ◽  
Sebastian Zabel ◽  
Christine Kirchhof ◽  
...  

Magnetoelectric resonators have been studied for the detection of small amplitude and low frequency magnetic fields via the delta-E effect, mainly in fundamental bending or bulk resonance modes. Here, we present an experimental and theoretical investigation of magnetoelectric thin-film cantilevers that can be operated in bending modes (BMs) and torsion modes (TMs) as a magnetic field sensor. A magnetoelastic macrospin model is combined with an electromechanical finite element model and a general description of the delta-E effect of all stiffness tensor components Cij is derived. Simulations confirm quantitatively that the delta-E effect of the C66 component has the promising potential of significantly increasing the magnetic sensitivity and the maximum normalized frequency change ∆fr. However, the electrical excitation of TMs remains challenging and is found to significantly diminish the gain in sensitivity. Experiments reveal the dependency of the sensitivity and ∆fr of TMs on the mode number, which differs fundamentally from BMs and is well explained by our model. Because the contribution of C11 to the TMs increases with the mode number, the first-order TM yields the highest magnetic sensitivity. Overall, general insights are gained for the design of high-sensitivity delta-E effect sensors, as well as for frequency tunable devices based on the delta-E effect.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J.-F. Ripoll ◽  
T. Farges ◽  
D. M. Malaspina ◽  
G. S. Cunningham ◽  
E. H. Lay ◽  
...  

AbstractLightning superbolts are the most powerful and rare lightning events with intense optical emission, first identified from space. Superbolt events occurred in 2010-2018 could be localized by extracting the high energy tail of the lightning stroke signals measured by the very low frequency ground stations of the World-Wide Lightning Location Network. Here, we report electromagnetic observations of superbolts from space using Van Allen Probes satellite measurements, and ground measurements, and with two events measured both from ground and space. From burst-triggered measurements, we compute electric and magnetic power spectral density for very low frequency waves driven by superbolts, both on Earth and transmitted into space, demonstrating that superbolts transmit 10-1000 times more powerful very low frequency waves into space than typical strokes and revealing that their extreme nature is observed in space. We find several properties of superbolts that notably differ from most lightning flashes; a more symmetric first ground-wave peak due to a longer rise time, larger peak current, weaker decay of electromagnetic power density in space with distance, and a power mostly confined in the very low frequency range. Their signal is absent in space during day times and is received with a long-time delay on the Van Allen Probes. These results have implications for our understanding of lightning and superbolts, for ionosphere-magnetosphere wave transmission, wave propagation in space, and remote sensing of extreme events.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3568
Author(s):  
Bernardita Cayupe ◽  
Carlos Morgan ◽  
Gustavo Puentes ◽  
Luis Valladares ◽  
Héctor Burgos ◽  
...  

Prenatally malnourished rats develop hypertension in adulthood, in part through increased α1-adrenoceptor-mediated outflow from the paraventricular nucleus (PVN) to the sympathetic system. We studied whether both α1-adrenoceptor-mediated noradrenergic excitatory pathways from the locus coeruleus (LC) to the PVN and their reciprocal excitatory CRFergic connections contribute to prenatal undernutrition-induced hypertension. For that purpose, we microinjected either α1-adrenoceptor or CRH receptor agonists and/or antagonists in the PVN or the LC, respectively. We also determined the α1-adrenoceptor density in whole hypothalamus and the expression levels of α1A-adrenoceptor mRNA in the PVN. The results showed that: (i) agonists microinjection increased systolic blood pressure and heart rate in normotensive eutrophic rats, but not in prenatally malnourished subjects; (ii) antagonists microinjection reduced hypertension and tachycardia in undernourished rats, but not in eutrophic controls; (iii) in undernourished animals, antagonist administration to one nuclei allowed the agonists recover full efficacy in the complementary nucleus, inducing hypertension and tachycardia; (iv) early undernutrition did not modify the number of α1-adrenoceptor binding sites in hypothalamus, but reduced the number of cells expressing α1A-adrenoceptor mRNA in the PVN. These results support the hypothesis that systolic pressure and heart rate are increased by tonic reciprocal paraventricular–coerulear excitatory interactions in prenatally undernourished young-adult rats.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
A. Rose Brannon ◽  
Gowtham Jayakumaran ◽  
Monica Diosdado ◽  
Juber Patel ◽  
Anna Razumova ◽  
...  

AbstractCirculating cell-free DNA from blood plasma of cancer patients can be used to non-invasively interrogate somatic tumor alterations. Here we develop MSK-ACCESS (Memorial Sloan Kettering - Analysis of Circulating cfDNA to Examine Somatic Status), an NGS assay for detection of very low frequency somatic alterations in 129 genes. Analytical validation demonstrated 92% sensitivity in de-novo mutation calling down to 0.5% allele frequency and 99% for a priori mutation profiling. To evaluate the performance of MSK-ACCESS, we report results from 681 prospective blood samples that underwent clinical analysis to guide patient management. Somatic alterations are detected in 73% of the samples, 56% of which have clinically actionable alterations. The utilization of matched normal sequencing allows retention of somatic alterations while removing over 10,000 germline and clonal hematopoiesis variants. Our experience illustrates the importance of analyzing matched normal samples when interpreting cfDNA results and highlights the importance of cfDNA as a genomic profiling source for cancer patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Madeleine Johansson ◽  
Fabrizio Ricci ◽  
Janin Schulte ◽  
Margaretha Persson ◽  
Olle Melander ◽  
...  

AbstractPostural orthostatic tachycardia syndrome (POTS) is a cardiovascular autonomic disorder with poorly understood etiology and underlying pathophysiology. Since cardiovascular morbidity has been linked to growth hormone (GH), we studied GH levels in patients with POTS. We conducted an age-sex-matched case–control study in patients with POTS (age 31 ± 9 years; n = 42) and healthy controls (32 ± 9 years; n = 46). Plasma GH levels were measured using high-sensitivity chemiluminescence sandwich immunoassay. The burden of orthostatic intolerance symptoms was assessed by the Orthostatic Hypotension Questionnaire (OHQ), consisting of a symptom assessment scale (OHSA) and a daily activity scale (OHDAS). POTS patients had significantly higher composite OHQ score than controls, more symptoms and less activity. Supine heart rate and diastolic blood pressure (BP), but not systolic BP, were significantly higher in POTS. Median plasma GH levels were significantly lower in POTS (0.53 ng/mL) than controls (2.33 ng/mL, p = 0.04). GH levels were inversely related to OHDAS in POTS and supine systolic BP in POTS and controls, but not heart rate neither group. POTS is associated with lower GH levels. Impairment of daily life activities is inversely related with GH in POTS. A higher supine diastolic BP is inversely associated with GH levels in POTS and healthy individuals.


Sign in / Sign up

Export Citation Format

Share Document