rBAT-b0,+AT heterodimer is the main apical reabsorption system for cystine in the kidney

2002 ◽  
Vol 283 (3) ◽  
pp. F540-F548 ◽  
Author(s):  
Esperanza Fernández ◽  
Montserrat Carrascal ◽  
Ferran Rousaud ◽  
Joaquín Abián ◽  
Antonio Zorzano ◽  
...  

Mutations in the rBAT and b0,+AT genes cause type I and non-type I cystinuria, respectively. The disulfide-linked rBAT-b0,+AT heterodimer mediates high-affinity transport of cystine and dibasic amino acids (b0,+-like activity) in heterologous cell systems. However, the significance of this heterodimer for cystine reabsorption is unknown, as direct evidence for such a complex in vivo is lacking and the expression patterns of rBAT and b0,+AT along the proximal tubule are opposite. We addressed this issue by biochemical means. Western blot analysis of mouse and human kidney brush-border membranes showed that rBAT and b0,+AT were solely expressed as heterodimers of identical size and that both proteins coprecipitated. Moreover, quantitative immunopurification of b0,+AT followed by SDS-PAGE and mass spectrometry analysis established that b0,+AT heterodimerizes exclusively with rBAT. Together with cystine reabsorption data, our results demonstrate that a decreasing expression gradient of heterodimeric rBAT-b0,+AT along the proximal tubule is responsible for virtually all apical cystine reabsorption. As a corollary of the above, there should be an excess of rBAT expression over that of b0,+AT protein in the kidney. Indeed, complete immunodepletion of b0,+AT did not coprecipitate >20–30% of rBAT. Therefore, another rBAT-associated subunit may be present in latter parts of the proximal tubule.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 892-892
Author(s):  
Yinghui Zhu ◽  
Xin He ◽  
Haojie Dong ◽  
Jie Sun ◽  
Hanying Wang ◽  
...  

Abstract Mixed-lineage leukemia-rearranged (MLL-r) ALL, seen in 70% of infant ALL, has a dismal prognosis compared to those with wild type MLL1 gene. Transcriptional profiling has identified Fms-like receptor tyrosine kinase 3 (FLT3) as one of the most significantly upregulated genes in MLL-r ALL. The highly expressed FLT3 protein is activated by the autocrine ligand, making the kinase a therapeutic target. FLT3 tyrosine kinase inhibitors (TKIs) such as PKC412, although effective in kinase inhibition, partially impair survival of MLL-r ALL cells and clinical trial results are not promising, promoting us to ask whether FLT3 regulates the ALL cells survival also through a kinase-independent mechanism. Herein, we report the finding of dimethylated arginines on FLT3, detected through mass spectrometry analysis of a MLL-r ALL specimen and a MLL-r ALL line SEM. The most conserved and enriched of dimethylated arginines are residues R972/R973. Using home-made arginine methylation (R-Me) antibody, we found that PRMT1, which is responsible for most type I arginine methyltransferases activity, catalyzes FLT3 methylation. Immunoblot (IB) analysis validated the expression of FLT3 R-Me in MLL-r ALL samples (6 out of 6) and MLL-r ALL lines (4 out of 4). Analysis of the GEO dataset (GSE13204) revealed that PRMT1 mRNA levels are increased in MLL-r ALL relative to normal cells (MLL-r, n=70 vs. normal, n=73, p<0.0001). We studied FLT3 R-Me biological function using two approaches that specifically blocked FLT3 methylation levels: cells expressing FLT3 methylation deficient construct (R972/973K, arginine [R] to lysine [K]) exhibited reduced survival (BaF3: FLT3-WT 98.5±0.11% vs. R972/973K 71.5±0.53%, p=0.0004); knockdown of PRMT1 in SEM cells also had an inhibitory effect (siCtrl 95.1±0.1% vs. siPRMT1 74.7±0.5%, p=0.0007). Moreover, the type I arginine methyltransferase inhibitor MS023 (5 µM) treatment markedly induced apoptosis of primary ALL cells but spared normal counterparts from healthy donors (ALL: vehicle 10.4±0.4% vs. MS023 23.7±0.8%, n=4; p<0.0001; normal CD19+: 8.3±0.3% vs. 8.2±0.1%, n=3, p=0.86). Interestingly, inhibition of FLT3 methylation decreased FLT3 phosphorylation at tyrosine 969 (Y969) but not Y589/591 or Y842. Expression of R972/973K decreased FLT3 downstream signaling like phospho-STAT5 and -AKT to a greater extent than that of Y969F mutant (Y to phenylalanine [F] substitution, mimics loss of Y phosphorylation). Next, FLT3 WT, R972/973K or Y969F transduced primary MLL-r ALL cells were transplanted into NSGS mice for analysis of leukemia development (n=6/group). Mice transplanted with FLT3 Y969F MLL-r ALL had longer survival relative to FLT-WT injected animals (p=0.0031), and the median survival was further extended in mice injected with R972/973K mutant compared with FLT3 Y969F MLL-r ALL (p=0.0007). Additionally, PKC412 treatment alone did not alter FLT3 R-Me, and high FLT3 methylation level in SEM cells was not affected by FLT3 ligand stimulation, confirming that the function of R-Me is independent of FLT3 phosphorylation. Importantly, we observed that the combination of MS023 with PKC412 significantly induced a higher rate of apoptosis in primary MLL-r ALL cells compared with each drug alone (control, 10±0.43%, MS023, 21.1±1.2%, PKC412, 21.5±0.11%, combination, 39.8±2.9%, PKC412 vs combination, p<0.01, n=4). We further tested the effects of in vivo administration of MS023 plus PKC412 on primary MLL-r ALL cells xenografted in NSGS mice. Following engraftment >1% in peripheral blood, mice were subdivided into four groups and treated with vehicle, PKC412 (100 mg/kg, i.g.), MS023 (80 mg/kg, i.p, bid), or the combination (n=7/group) for 4 weeks. The BM tumor burden of CD45+ CD19+ cells was reduced in single drug-treated mice cohorts, with further reduction after combination treatment (vehicle, 94.4±0.5%, PKC412, 50.2±6.3%, MS023, 55.6±4.5%, combination, 30.7±4.9%, PKC412 vs. combination, p<0.001). Secondary transplantation of BM cells from mice receiving combination treatment resulted in significantly reduced BM engraftment at 16 weeks compared to PKC412 treatment alone (PKC412, 62.2±4.9%, combination, 8.4±5.1%, n=5, p<0.0001), indicating reduced leukemia initiating capacity. Our results support further exploring the molecular function of FLT3 R-Me. We will determine whether PRMT1 and FLT3 methylation are potential druggable targets in MLL-r ALL. Disclosures Konopleva: Stemline Therapeutics: Research Funding.


2018 ◽  
Author(s):  
Yuanzheng Wang ◽  
Yansha Li ◽  
Tabata Rosas-Diaz ◽  
Carlos Caceres-Moreno ◽  
Rosa Lozano-Duran ◽  
...  

AbstractA robust regulation of plant immune responses requires multitude of positive and negative regulators that act in concert. The immune-associated nucleotide-binding (IAN) gene family members are associated with immunity in different organisms, although no characterization of their function has been carried out to date in plants. In this work, we analyzed the expression patterns of IAN genes and found that IAN9 is repressed upon pathogen infection or treatment with immune elicitors. IAN9 encodes a plasma membrane-localized protein that genetically behaves as a negative regulator of immunity. A novel ian9 mutant generated by CRISPR/Cas9 shows increased resistance to Pseudomonas syringae, while transgenic plants overexpressing IAN9 show a slight increase in susceptibility. In vivo immunoprecipitation of IAN9-GFP followed by mass spectrometry analysis revealed that IAN9 associates with a previously uncharacterized C3HC4-type RING finger domain-containing protein that we named IAP1, for IAN9-associated protein 1, which also acts as a negative regulator of basal immunity. Interestingly, neither ian9 or iap1 mutant plants show any obvious developmental phenotype, suggesting that they display enhanced inducible immunity rather than constitutive immune responses. Since both IAN9 and IAP1 have orthologs in important crop species, they could be suitable targets to generate plants more resistant to diseases caused by bacterial pathogens without yield penalty.


2011 ◽  
Vol 300 (6) ◽  
pp. F1283-F1290 ◽  
Author(s):  
Jung Pyo Lee ◽  
Seung Hee Yang ◽  
Dong Ki Kim ◽  
Hajeong Lee ◽  
Bora Kim ◽  
...  

Epoxyeicosatrienoic acid (EET) regulates the functional integrity of the endothelium. It is hypothesized that the activity of epoxide hydrolase ( EPHX2), which determines EET concentration through hydrolysis, may affect the progression of glomerulonephritis. Here, we evaluated the relationship between genetic variations, the in vivo activity of EPHX2, and progression of IgA nephropathy (IgAN). Three single-nucleotide polymorphisms (SNPs) [rs41507953 (K55R), rs751141 (R287Q), and rs1042032] were traced in 401 IgAN patients and 402 normal healthy controls. The in vivo activity of EPHX2 was assessed by measuring substrates/metabolites of the enzyme. None of the polymorphism frequencies differed significantly between patients and controls. However, patients carrying the variant allele (A) of rs751141 possessed better kidney survival than those with the wild-type allele (G; P < 0.001). This association remained significant after adjustment for several risk factors (hazard ratio 1.83, 95% confidence interval 1.13–2.96, P = 0.014). Vascular damage was more prominent in kidney biopsies from patients carrying the G allele of rs751141. The in vivo activity of EPHX2, assessed by the epoxyoctadecenoic acid/dihydroxyoctadecenoic acid ratio using liquid chromatography/mass spectrometry analysis, was elevated in patients with the G allele. The expression of EPHX2 in the human kidney was independent of the sequence variation of the rs751141 allele. Variant rs41507953 was not present in this cohort, and rs1042032 was not associated with progression. Thus the specific measures which regulate EPHX2 activity should be designed for potential therapeutics.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Takashi Kanamoto ◽  
Takashi Tachibana ◽  
Yasushi Kitaoka ◽  
Toshio Hisatomi ◽  
Yasuhiro Ikeda ◽  
...  

Purpose. To investigate the effect of ocular hypertension-induced isomerization of aspartic acid in retinal proteins. Methods. Adult Wistar rats with ocular hypertension were used as an experimental model. D-β-aspartic acid-containing proteins were isolated by SDS-PAGE and western blot with an anti-D-β-aspartic acid antibody and identified by liquid chromatography-mass spectrometry analysis. The concentration of ATP was measured by ELISA. Results. D-β-aspartic acid was expressed in a protein band at around 44.5 kDa at much higher quantities in the retinas of rats with ocular hypertension than in those of normotensive rats. The 44.5 kDa protein band was mainly composed of α-enolase, S-arrestin, and ATP synthase subunits α and β, in both the ocular hypertensive and normotensive retinas. Moreover, increasing intraocular pressure was correlated with increasing ATP concentrations in the retinas of rats. Conclusion. Ocular hypertension affected the expression of proteins containing D-β-aspartic acid, including ATP synthase subunits, and up-regulation of ATP in the retinas of rats.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4699
Author(s):  
Mubashir Mintoo ◽  
Amritangshu Chakravarty ◽  
Ronak Tilvawala

Proteases play a central role in various biochemical pathways catalyzing and regulating key biological events. Proteases catalyze an irreversible post-translational modification called proteolysis by hydrolyzing peptide bonds in proteins. Given the destructive potential of proteolysis, protease activity is tightly regulated. Dysregulation of protease activity has been reported in numerous disease conditions, including cancers, neurodegenerative diseases, inflammatory conditions, cardiovascular diseases, and viral infections. The proteolytic profile of a cell, tissue, or organ is governed by protease activation, activity, and substrate specificity. Thus, identifying protease substrates and proteolytic events under physiological conditions can provide crucial information about how the change in protease regulation can alter the cellular proteolytic landscape. In recent years, mass spectrometry-based techniques called N-terminomics have become instrumental in identifying protease substrates from complex biological mixtures. N-terminomics employs the labeling and enrichment of native and neo-N-termini peptides, generated upon proteolysis followed by mass spectrometry analysis allowing protease substrate profiling directly from biological samples. In this review, we provide a brief overview of N-terminomics techniques, focusing on their strengths, weaknesses, limitations, and providing specific examples where they were successfully employed to identify protease substrates in vivo and under physiological conditions. In addition, we explore the current trends in the protease field and the potential for future developments.


Plants ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 79 ◽  
Author(s):  
María Ibáñez ◽  
María Blázquez

The chemical composition of winter savory, peppermint, and anise essential oils, and in vitro and in vivo phytotoxic activity against weeds (Portulaca oleracea, Lolium multiflorum, and Echinochloa crus-galli) and food crops (maize, rice, and tomato), have been studied. Sixty-four compounds accounting for between 97.67–99.66% of the total essential oils were identified by Gas Chromatography-Mass Spectrometry analysis. Winter savory with carvacrol (43.34%) and thymol (23.20%) as the main compounds produced a total inhibitory effect against the seed germination of tested weed. Menthol (48.23%), menthone (23.33%), and iso-menthone (16.33%) from peppermint only showed total seed germination inhibition on L. multiflorum, whereas no significant effects were observed with trans-anethole (99.46%) from anise at all concentrations (0.125–1 µL/mL). Low doses of peppermint essential oil could be used as a sustainable alternative to synthetic agrochemicals to control L. multiflorum. The results corroborate that in vivo assays with a commercial emulsifiable concentrate need higher doses of the essential oils to reproduce previous in vitro trials. The higher in vivo phytotoxicity of winter savory essential oil constitutes an eco-friendly and less pernicious alternative to weed control. It is possible to achieve a greater in vivo phytotoxicity if less active essential oil like peppermint is included with other active excipients.


2003 ◽  
Vol 16 (6) ◽  
pp. 553-564 ◽  
Author(s):  
Benoît Poinssot ◽  
Elodie Vandelle ◽  
Marc Bentéjac ◽  
Marielle Adrian ◽  
Caroline Levis ◽  
...  

A purified glycoprotein from Botrytis cinerea(strain T4), identified as endopolygalacturonase 1 (T4BcPG1) by mass spectrometry analysis, has been shown to activate defense reactions in grapevine (Vitis vinifera cv. Gamay). These reactions include calcium influx, production of active oxygen species, activation of two mitogen-activated protein kinases, defense gene transcript accumulation, and phytoalexin production. Most of these defense reactions were also activated in grapevine in response to purified oligogalacturonides (OGA) with a degree of polymerization of 9 to 20. In vivo, these active OGA might be a part of the released products resulting from endopolygalacturonase activity on plant cell walls. Nevertheless, the intensity and kinetics of events triggered by OGA were very different when compared with T4BcPG1 effects. Moreover, chemical treatments of T4BcPG1 and desensitization assays have allowed us to discriminate enzymatic and elicitor activities, indicating that elicitor activity was not due to released oligogalacturonides. Thus, BcPG1 should be considered as both an avirulence and a virulence factor. The role of the secreted BcPG1 in the pathogenicity of Botrytis cinerea is discussed.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Andre Gonçalves Prospero ◽  
Lais Pereira Buranello ◽  
Carlos AH Fernandes ◽  
Lucilene Delazari dos Santos ◽  
Guilherme Soares ◽  
...  

Background: We evaluated the impacts of corona protein (CP) formation on the alternating current biosusceptometry (ACB) signal intensity and in vivo circulation times of three differently coated magnetic nanoparticles (MNP): bare, citrate-coated and bovine serum albumin-coated MNPs. Methods: We employed the ACB system, gel electrophoresis and mass spectrometry analysis. Results: Higher CP formation led to a greater reduction in the in vitro ACB signal intensity and circulation time. We found fewer proteins forming the CP for the bovine serum albumin-coated MNPs, which presented the highest circulation time in vivo among the MNPs studied. Conclusion: These data showed better biocompatibility, stability and magnetic signal uniformity in biological media for bovine serum albumin-coated MNPs than for citrate-coated MNPs and bare MNPs.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Reheman Adili ◽  
Katherine Mast ◽  
Michael Holinstat

12-lipoxygenase (12-LOX) has been demonstrated to regulate platelet function, hemostasis, and thrombosis ex vivo , supporting a key role for 12-LOX in regulation of in vivo thrombosis. While pharmacologically targeting 12-LOX in vivo has been a challenge to date, the recent development of the 12-LOX selective inhibitor, ML355, as an effective antiplatelet therapeutic in vivo was assessed. ML355 potently inhibited thrombin and other agonist-induced platelet aggregation ex vivo in washed human platelets and inhibited downstream oxylipin production of platelet 12-LOX as confirmed by Mass spectrometry analysis. Ex vivo flow chamber assays confirmed that human platelet adhesion and thrombus formation at arterial shear over collagen was attenuated in human whole blood treated with ML355 to a greater extent compared to aspirin. In vivo , PK assessment of ML355 showed reasonable 12-LOX plasma levels 12 hours following administration of ML355. FeCl 3 -induced injury of the mesenteric arterioles resulted in less stable thrombi in 12-LOX -/- mice and ML355-treated WT mice resulting in impairment of vessel occlusion. Additionally, ML355 dose-dependently inhibited laser-induced thrombus formation in the cremaster arteriole thrombosis model in WT, but not in 12-LOX -/- mice. Importantly, hemostatic plug formation and bleeding following treatment with ML355 were not affected in response to laser ablation on the saphenous vein or in a cremaster microvasculature laser-induced rupture model. Our data strongly supports 12-LOX as a key determinant of platelet reactivity in vivo and inhibition of platelet 12-LOX with ML355 may represent a new class of antiplatelet therapeutics.


Sign in / Sign up

Export Citation Format

Share Document