Positive end-expiratory pressure affects geometry and function of the human diaphragm

2021 ◽  
Vol 131 (4) ◽  
pp. 1328-1339
Author(s):  
Diana Jansen ◽  
Annemijn H. Jonkman ◽  
Heder J. de Vries ◽  
Myrte Wennen ◽  
Judith Elshof ◽  
...  

We demonstrate that PEEP causes changes in diaphragm geometry, especially muscle shortening, and decreases in vivo diaphragm contractile function. Thus prerequisites for the development of diaphragm longitudinal muscle atrophy are present with the acute application of PEEP. Once confirmed in ventilated critically ill patients, this could provide a new mechanism for ventilator-induced diaphragm dysfunction and ventilator weaning failure in the intensive care unit (ICU).

2011 ◽  
Vol 300 (3) ◽  
pp. H943-H950 ◽  
Author(s):  
Roland Vetter ◽  
Uwe Rehfeld ◽  
Christoph Reissfelder ◽  
Henry Fechner ◽  
Enn Seppet ◽  
...  

The sarco/endoplasmic reticulum (SR) Ca2+-ATPase SERCA2a has a key role in controlling cardiac contraction and relaxation. In hypothyroidism, decreased expression of the thyroid hormone (TH)-responsive SERCA2 gene contributes to slowed SR Ca2+ reuptake and relaxation. We investigated whether cardiac expression of a TH-insensitive SERCA2a cDNA minigene can rescue SR Ca2+ handling and contractile function in female SERCA2a-transgenic rats (TG) with experimental hypothyroidism. Wild-type rats (WT) and TG were rendered hypothyroid by 6- N-propyl-2-thiouracil treatment for 6 wk; control rats received no treatment. In vivo measured left ventricular (LV) hemodynamic parameters were compared with SERCA2a expression and function in LV tissue. Hypothyroidism decreased LV peak systolic pressure, dP/d tmax, and dP/d tmin in both WT and TG. However, loss of function was less in TG. Thus slowed relaxation in hypothyroidism was found to be 1.5-fold faster in TG compared with WT ( P < 0.05). In parallel, a 1.4-fold higher Vmax value of homogenate SR Ca2+ uptake was observed in hypothyroid TG ( P < 0.05 vs. hypothyroid WT), and the hypothyroidism-caused decline of LV SERCA2a mRNA expression in TG by −24% was markedly less than the decrease of −49% in WT ( P < 0.05). A linear relationship was observed between the SERCA2a/PLB mRNA ratio values and the Vmax values of SR Ca2+ uptake when the respective data of all experimental groups were plotted together ( r = 0.90). The data show that expression of the TH-insensitive SERCA2a minigene compensates for loss of expressional activity of the TH-responsive native SERCA2a gene in the female hypothyroid rat heart. However, SR Ca2+ uptake and in vivo heart function were only partially rescued.


1993 ◽  
Vol 75 (2) ◽  
pp. 738-744 ◽  
Author(s):  
R. H. Moreno ◽  
C. Lisboa ◽  
J. C. Hogg ◽  
P. D. Pare

Airway smooth muscle can contract to 20% of its starting length when stimulated maximally and allowed to contract isotonically in vitro. In vivo airway smooth muscle contraction of this degree would result in widespread airway closure. We hypothesized that elastic loads related to cartilage stiffness and lung parenchyma-airway interdependence limit in vivo airway smooth muscle shortening. We measured pulmonary resistance in anesthetized tracheostomized New Zealand White rabbits before and after intravenous treatment with papain in a concentration that produced generalized cartilage softening. Papain treatment caused a significant increase in pulmonary resistance that was completely reversed by application of 4 cmH2O positive end-expiratory pressure and that was partially reversed by vagotomy. Papain pretreatment also resulted in a substantial alteration in the pulmonary resistance-dose relationship to intravenously administered acetylcholine. In addition, maximal resistance after the highest concentration of acetylcholine was greater in papain-treated animals than in the control animals, but the position of the dose-response relationship was not shifted (i.e., there was no change in the effective dose causing 50% maximal response). Application of 4 cmH2O positive end-expiratory pressure in untreated animals resulted in a marked decrease in the bronchoconstriction produced by an effective dose of acetylcholine causing 50% of maximal response, whereas application of 4 cmH2O negative end-expiratory pressure resulted in a marked enhancement of the bronchoconstrictor response to the same intravenous dose of acetylcholine. We conclude that cartilage elasticity and lung recoil are important determinants of the ability of airway smooth muscle to shorten and produce airway narrowing in vivo.


1997 ◽  
Vol 272 (6) ◽  
pp. H2664-H2670 ◽  
Author(s):  
M. A. Portman ◽  
Y. Xiao ◽  
B. G. Broers ◽  
X. H. Ning

Regulation of intracellular pH (pHi) may contribute to maintenance of cardiac contractile function during graded hypoxia in vivo. To test this hypothesis, we disturbed pHi regulation in vivo using two approaches: alpha-adrenoreceptor antagonism with phentolamine (1 mg/kg) (Phen; n = 9); and Na+/H+ exchange inhibition with HOE-642 (2 mg/kg; n = 6) before graded hypoxia in open-chest sheep. Hemodynamic parameters including left ventricular maximal pressure development (dP/dtmax) cardiac index (CI), and left ventricular power were monitored continuously and simultaneously with high-energy phosphate levels and pHi, measured with 31P nuclear magnetic resonance spectroscopy in Phen, HOE-642, and control (Con; n = 9). In subgroups (n = 6) in Con and Phen, coronary flow, myocardial oxygen consumption (MVO2), and lactate uptake were also measured. During hypoxia, the functional parameters left ventricular dP/dtmax, CI, and left ventricular power decreased significantly compared with baseline and Con values. These decreases were preceded by a significant drop (P < 0.05) in pHi from 7.10 +/- 0.04 to 6.69 +/- 0.05 in Phen and corresponded temporally to a pHi drop from 7.10 +/- 0.02 to 6.77 +/- 0.03 in HOE-642. Decreases in pHi in Phen were not preceded by decreases in cardiac function or MVO2. In contrast, cardiac function parameters increased significantly in Con, whereas no significant pHi decrease occurred (7.07 +/- 0.03 to 6.98 +/- 0.04). We conclude that these data indicate that pHi regulation can be disrupted through alpha-adrenergic antagonism or Na+/H(+)-exchange inhibition in vivo. These studies demonstrate that pHi regulation performs a role in the modulation of cardiac function during hypoxia in vivo.


2003 ◽  
Vol 284 (3) ◽  
pp. H960-H969 ◽  
Author(s):  
Andrzej M. Janczewski ◽  
Toshiaki Kadokami ◽  
Bonnie Lemster ◽  
Carole S. Frye ◽  
Charles F. McTiernan ◽  
...  

Transgenic (TG) TNF1.6 mice, which cardiac specifically overexpress tumor necrosis factor-α (TNF-α), exhibit heart failure (HF) and increased mortality, which is markedly higher in young (<20 wk) males (TG-M) than females (TG-F). HF in this model may be partly caused by remodeling of the extracellular matrix and/or structure/function alterations at the single myocyte level. We studied left ventricular (LV) structure and function using echocardiography and LV myocyte morphometry, contractile function, and intracellular Ca2+ (Ca[Formula: see text]) handling using cell edge detection and fura 2 fluorescence, respectively, in 12-wk-old TG-M and TG-F mice and their wild-type (WT) littermates. TG-F mice showed LV hypertrophy without dilatation and only a small reduction of basal fractional shortening (FS) and response to isoproterenol (Iso). TG-M mice showed a large LV dilatation, higher mRNA levels of β-myosin heavy chain and atrial natriuretic factor versus TG-F mice, reduced FS relative to both WT and TG-F mice, and minimal response to Iso. TG-F and TG-M myocytes were similarly elongated (by ≈20%). The amplitude of Ca[Formula: see text] transients and contractions and the response to Iso were comparable in WT and TG-F myocytes, whereas the time to 50% decline (TD50%) of the Ca[Formula: see text]transient, an index of the rate of sarcoplasmic reticulum Ca2+ uptake, was prolonged in TG-F myocytes. In TG-M myocytes, the amplitudes of Ca[Formula: see text] transients and contractions were reduced, TD50% of the Ca[Formula: see text] transient was prolonged, and the inotropic effect of Iso on Ca[Formula: see text] transients was reduced approximately twofold versus WT myocytes. Protein expression of sarco(endo)plasmic reticulum Ca2+-ATPase 2 and phospholamban was unaltered in TG versus WT hearts, suggesting functional origins of impaired Ca2+ handling in the former. These results indicate that cardiac-specific overexpression of TNF-α induces myocyte hypertrophy and gender-dependent alterations in Ca[Formula: see text] handling and contractile function, which may at least partly account for changes in LV geometry and in vivo cardiac function in this model.


2016 ◽  
Vol 120 (2) ◽  
pp. 188-195 ◽  
Author(s):  
Kimberly A. Huey ◽  
Sophia A. Smith ◽  
Alexis Sulaeman ◽  
Ellen C. Breen

The ability to enhance muscle size and function is important for overall health. In this study, skeletal myofiber vascular endothelial growth factor (VEGF) was hypothesized to regulate hypertrophy, capillarity, and contractile function in response to functional overload (FO). Adult myofiber-specific VEGF gene-ablated mice (skmVEGF−/−) and wild-type (WT) littermates underwent plantaris FO or sham surgery (SHAM). Mass, morphology, in vivo function, IGF-1, basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and Akt were measured at 7, 14, and 30 days. FO resulted in hypertrophy in both genotypes, but fiber sizes were 13% and 23% smaller after 14 and 30 days, respectively, and mass 15% less after 30 days in skmVEGF−/− than WT. FO increased isometric force after 30 days in WT and decreased in skmVEGF−/− after 7 and 14 days. FO also resulted in a reduction in specific force and this differed between genotypes at 14 days. Fatigue resistance improved only in 14-day WT mice. Capillary density was decreased by FO in both genotypes. However, capillary-to-fiber ratios were 19% and 15% lower in skmVEGF−/− than WT at the 14- and 30-day time points, respectively. IGF-1 was increased by FO at all time points and was 45% and 40% greater in skmVEGF−/− than WT after 7 and 14 days, respectively. bFGF, HGF, total Akt, and phospho-Akt, independent of VEGF expression, and VEGF levels in WT were increased after 7 days of FO. These findings suggest VEGF-dependent capillary maintenance supports muscle growth and function in overloaded muscle and is not rescued by compensatory IGF-1 expression.


2005 ◽  
Vol 83 (2) ◽  
pp. 183-190 ◽  
Author(s):  
Ellen Aasum ◽  
Marie Cooper ◽  
David L Severson ◽  
Terje S Larsen

Peroxisome proliferator-activated receptor-α (PPARα) regulates the expression of fatty acid (FA) oxidation genes in liver and heart. Although PPARα ligands increased FA oxidation in cultured cardiomyocytes, the cardiac effects of chronic PPARα ligand administration in vivo have not been studied. Diabetic db/db mouse hearts exhibit characteristics of a diabetic cardiomyopathy, with altered metabolism and reduced contractile function. A testable hypothesis is that chronic administration of a PPARα agonist to db/db mice will normalize cardiac metabolism and improve contractile function. Therefore, a PPARα ligand (BM 17.0744) was administered orally to control and type 2 diabetic (db/db) mice (37.9 ± 2.5 mg/(kg·d) for 8 weeks), and effects on cardiac metabolism and contractile function were assessed. BM 17.0744 reduced plasma glucose in db/db mice, but no change was observed in control mice. FA oxidation was significantly reduced in BM 17.0744 treated db/db hearts with a corresponding increase in glycolysis and glucose oxidation; glucose and FA oxidation in control hearts was unchanged by BM 17.0744. PPARα treatment did not alter expression of PPARα target genes in either control or diabetic hearts. Therefore, metabolic alterations in hearts from PPARα-treated diabetic mice most likely reflect indirect mechanisms related to improvement in diabetic status in vivo. Despite normalization of cardiac metabolism, PPARα treatment did not improve cardiac function in diabetic hearts.Key words: PPAR, cardiac metabolism and function, diabetes.


Author(s):  
K.E. Krizan ◽  
J.E. Laffoon ◽  
M.J. Buckley

With increase use of tissue-integrated prostheses in recent years it is a goal to understand what is happening at the interface between haversion bone and bulk metal. This study uses electron microscopy (EM) techniques to establish parameters for osseointegration (structure and function between bone and nonload-carrying implants) in an animal model. In the past the interface has been evaluated extensively with light microscopy methods. Today researchers are using the EM for ultrastructural studies of the bone tissue and implant responses to an in vivo environment. Under general anesthesia nine adult mongrel dogs received three Brånemark (Nobelpharma) 3.75 × 7 mm titanium implants surgical placed in their left zygomatic arch. After a one year healing period the animals were injected with a routine bone marker (oxytetracycline), euthanized and perfused via aortic cannulation with 3% glutaraldehyde in 0.1M cacodylate buffer pH 7.2. Implants were retrieved en bloc, harvest radiographs made (Fig. 1), and routinely embedded in plastic. Tissue and implants were cut into 300 micron thick wafers, longitudinally to the implant with an Isomet saw and diamond wafering blade [Beuhler] until the center of the implant was reached.


2020 ◽  
Vol 477 (7) ◽  
pp. 1261-1286 ◽  
Author(s):  
Marie Anne Richard ◽  
Hannah Pallubinsky ◽  
Denis P. Blondin

Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.


Sign in / Sign up

Export Citation Format

Share Document