scholarly journals Mechanistic Links Between Obesity, Diabetes, and Blood Pressure: Role of Perivascular Adipose Tissue

2019 ◽  
Vol 99 (4) ◽  
pp. 1701-1763 ◽  
Author(s):  
Sophie N. Saxton ◽  
Ben J. Clark ◽  
Sarah B. Withers ◽  
Etto C. Eringa ◽  
Anthony M. Heagerty

Obesity is increasingly prevalent and is associated with substantial cardiovascular risk. Adipose tissue distribution and morphology play a key role in determining the degree of adverse effects, and a key factor in the disease process appears to be the inflammatory cell population in adipose tissue. Healthy adipose tissue secretes a number of vasoactive adipokines and anti-inflammatory cytokines, and changes to this secretory profile will contribute to pathogenesis in obesity. In this review, we discuss the links between adipokine dysregulation and the development of hypertension and diabetes and explore the potential for manipulating adipose tissue morphology and its immune cell population to improve cardiovascular health in obesity.

Blood ◽  
2012 ◽  
Vol 120 (25) ◽  
pp. 4952-4962 ◽  
Author(s):  
Sandrine Poglio ◽  
Fabienne De Toni ◽  
Daniel Lewandowski ◽  
Adeline Minot ◽  
Emmanuelle Arnaud ◽  
...  

Abstract White adipose tissue (WAT) is the focus of new interest because of the presence of an abundant and complex immune cell population that is involved in key pathologies such as metabolic syndrome. Based on in vivo reconstitution assays, it is thought that these immune cells are derived from the bone marrow (BM). However, previous studies have shown that WAT exhibits specific hematopoietic activity exerted by an unknown subpopulation of cells. In the present study, we prospectively isolated a peculiar hematopoietic stem/progenitor cell population from murine WAT. The cells are phenotypically similar to BM hematopoietic stem cells and are able to differentiate into both myeloid and lymphoid lineages in vitro. In competitive repopulation assays in vivo, they reconstituted the innate immune compartment in WAT preferentially and more efficiently than BM cells, but did not reconstitute hematopoietic organs. They were also able to give rise to multilineage engraftment in both secondary recipients and in utero transplantation. Therefore, we propose that WAT hematopoietic cells constitute a population of immature cells that are able to renew innate immune cell populations. Considering the amount of WAT in adults, our results suggest that WAT hematopoietic activity controls WAT inflammatory processes and also supports innate immune responses in other organs.


2015 ◽  
Vol 90 (6) ◽  
pp. 3003-3017 ◽  
Author(s):  
James E. Vincenti ◽  
Lita Murphy ◽  
Kathleen Grabert ◽  
Barry W. McColl ◽  
Enrico Cancellotti ◽  
...  

ABSTRACTInflammation has been proposed as a major component of neurodegenerative diseases, although the precise role it plays has yet to be defined. We examined the role of key contributors to this inflammatory process, microglia, the major resident immune cell population of the brain, in a prion disease model of chronic neurodegeneration. Initially, we performed an extensive reanalysis of a large study of prion disease, where the transcriptome of mouse brains had been monitored throughout the time course of disease. Our analysis has provided a detailed classification of the disease-associated genes based on cell type of origin and gene function. This revealed that the genes upregulated during disease, regardless of the strain of mouse or prion protein, are expressed predominantly by activated microglia. In order to study the microglia contribution more specifically, we established a mouse model of prion disease in which the 79A murine prion strain was introduced by an intraperitoneal route into BALB/cJFms-EGFP/−mice, which express enhanced green fluorescent protein under the control of thec-fmsoperon. Samples were taken at time points during disease progression, and histological analysis of the brain and transcriptional analysis of isolated microglia was carried out. The analysis of isolated microglia revealed a disease-specific, highly proinflammatory signature in addition to an upregulation of genes associated with metabolism and respiratory stress. This study strongly supports the growing recognition of the importance of microglia within the prion disease process and identifies the nature of the response through gene expression analysis of isolated microglia.IMPORTANCEInflammation has been proposed as a major component of neurodegenerative diseases. We have examined the role of key contributors to this inflammatory process, microglia, the major resident immune cell population of the brain, in a murine prion disease model of chronic neurodegeneration. Our study demonstrates that genes upregulated throughout the disease process are expressed predominantly by microglia. A disease-specific, highly proinflammatory signature was observed in addition to an upregulation of genes associated with metabolism and respiratory stress. This study strongly supports the growing recognition of the important contribution of microglia to a chronic neurodegenerative disease process.


2021 ◽  
Vol 128 (7) ◽  
pp. 951-968 ◽  
Author(s):  
Mascha Koenen ◽  
Michael A. Hill ◽  
Paul Cohen ◽  
James R. Sowers

Cardiovascular diseases are the leading cause of death worldwide. Overweight and obesity are strongly associated with comorbidities such as hypertension and insulin resistance, which collectively contribute to the development of cardiovascular diseases and resultant morbidity and mortality. Forty-two percent of adults in the United States are obese, and a total of 1.9 billion adults worldwide are overweight or obese. These alarming numbers, which continue to climb, represent a major health and economic burden. Adipose tissue is a highly dynamic organ that can be classified based on the cellular composition of different depots and their distinct anatomical localization. Massive expansion and remodeling of adipose tissue during obesity differentially affects specific adipose tissue depots and significantly contributes to vascular dysfunction and cardiovascular diseases. Visceral adipose tissue accumulation results in increased immune cell infiltration and secretion of vasoconstrictor mediators, whereas expansion of subcutaneous adipose tissue is less harmful. Therefore, fat distribution more than overall body weight is a key determinant of the risk for cardiovascular diseases. Thermogenic brown and beige adipose tissue, in contrast to white adipose tissue, is associated with beneficial effects on the vasculature. The relationship between the type of adipose tissue and its influence on vascular function becomes particularly evident in the context of the heterogenous phenotype of perivascular adipose tissue that is strongly location dependent. In this review, we address the abnormal remodeling of specific adipose tissue depots during obesity and how this critically contributes to the development of hypertension, endothelial dysfunction, and vascular stiffness. We also discuss the local and systemic roles of adipose tissue derived secreted factors and increased systemic inflammation during obesity and highlight their detrimental impact on cardiovascular health.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15512-e15512
Author(s):  
David A. Drubin ◽  
Anne-Katrin Hess ◽  
Natalie L. Catlett ◽  
Alessandro Di Cara ◽  
Yvonne Wettergren ◽  
...  

e15512 Background: One of the target enzymes of 5-fluorouracil (5-FU)-based therapies is thymidylate synthase (TS) encoded by the TYMS gene. To enhance the effect of 5-FU, a folate analogue is often provided as part of the treatment. In this context, it has previously been shown in the ISO-CC-005 clinical study that TYMS gene expression can be predictive of response to 5-FU + folate analogue Arfolitixorin. Methods: To better understand the role of TYMS expression as a predictor of response to 5-FU + folate-based therapies and identify potential mechanisms and biomarkers of sensitivity/resistance, we leveraged data from the publicly available cancer genome atlas database (TCGA). We combined this information with a knowledgebase of causal biological relationships extracted from peer reviewed publications, to identify other relevant genes and candidate upstream controllers directly or indirectly related to TYMS expression and 5-FU + folate efficacy. Results: In TCGA subjects suffering from colorectal cancer (CRC) (stage IV tumors, treated with FOLFOX/FOLFIRI (n = 38)), lower TYMS expression was associated with a better overall survival (OS). This is consistent with what has been observed in the ISO-CC-005 study. Applying our causal biology knowledgebase to both genes identified as correlated to TYMS expression in TCGA CRC tumors and other published sets of genes associated with FOLFOX or FOLFIRI efficacy, we identified overlap with a MYCN signature. Notably MYC has been shown to directly activate TYMS expression. Thus, the MYC family is a compelling candidate upstream controller of these genes. We scored TCGA CRC tumors for inferred MYC activity, using this MYCN gene signature, and evaluated the inferred activity with respect to OS. In stage IV tumors, higher inferred MYC activity appears to be associated with worse OS. To further characterize this inferred MYC activity, we employed a transcriptomics-based cell deconvolution estimation of immune cell population proportions in the TCGA CRC cohort. We found inferred MYC activity inversely correlated with immune cell proportions overall, specifically strongest with those of pDCs and classical monocytes. Conclusions: MYC activation, a known transcriptional regulator of TYMS, has been identified as a potentially relevant common upstream controller of a group of genes involved in 5-FU + folate analogue efficacy. Here we have also observed a similar relationship to OS between TYMS and inferred MYC activity in Stage IV CRC. MYC family activity (and activated protein forms), genes of the MYCN signature, or the identified immune cell proportions are all potential biomarker candidates to explore as factors in 5-FU + folate analogue efficacy.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Elizabeth G. Wood ◽  
Claire E. Macdougall ◽  
Hazel Blythe ◽  
Marc Clément ◽  
Romain A. Colas ◽  
...  

AbstractObesity is among the leading causes of elevated cardiovascular disease mortality and morbidity. Adipose tissue dysfunction, insulin resistance and inflammation are recognized as important risk factors for the development of cardiovascular disorders in obesity. Hypoxia appears to be a key factor in adipose tissue dysfunction affecting not only adipocytes but also immune cell function. Here we examined the effect of hypoxia-induced transcription factor HIF1α activation on classical dendritic cell (cDCs) function during obesity. We found that deletion of Hif1α on cDCs results in enhanced adipose-tissue inflammation and atherosclerotic plaque formation in a mouse model of obesity. This effect is mediated by HIF1α-mediated increased lipid synthesis, accumulation of lipid droplets and alter synthesis of lipid mediators. Our findings demonstrate that HIF1α activation in cDCs is necessary to control vessel wall inflammation.


Author(s):  
Tong Wei ◽  
Jing Gao ◽  
Chenglin Huang ◽  
Bei Song ◽  
Mengwei Sun ◽  
...  

Objective: Infiltrated macrophages actively promote perivascular adipose tissue remodeling and represent a dominant population in the perivascular adipose tissue microenvironment of hypertensive mice. However, the role of macrophages in initiating metabolic inflammation remains uncertain. SIRT3 (sirtuin-3), a NAD-dependent deacetylase, is sensitive to metabolic status and mediates adaptation responses. In this study, we investigated the role of SIRT3-mediated metabolic shift in regulating NLRP3 (Nod-like receptor family pyrin domain-containing 3) inflammasome activation. Approach and Results: Here, we report that Ang II (angiotensin II) accelerates perivascular adipose tissue inflammation and fibrosis, accompanied by NLRP3 inflammasome activation and IL (interleukin)-1β secretion in myeloid SIRT3 knockout (SIRT3 − / − ) mice. This effect is associated with adipose tissue mitochondrial dysfunction. In vitro studies indicate that the deletion of SIRT3 in bone marrow–derived macrophages induces IL-1β production by shifting the metabolic phenotype from oxidative phosphorylation to glycolysis. Mechanistically, SIRT3 deacetylates and activates PDHA1 (pyruvate dehydrogenase E1 alpha) at lysine 83, and the loss of SIRT3 leads to PDH activity decrease and lactate accumulation. Knocking down LDHA (lactate dehydrogenase A) or using carnosine, a buffer against lactic acid, attenuates IL-1β secretion. Furthermore, the blockade of IL-1β from macrophages into brown adipocytes restores thermogenic markers and mitochondrial oxygen consumption. Moreover, NLRP3 knockout (NLRP3 −/− ) mice exhibited reduced IL-1β production while rescuing the mitochondrial function of brown adipocytes and alleviating perivascular adipose tissue fibrosis. Conclusions: SIRT3 represents a potential therapeutic target to attenuate NLRP3-related inflammation. Pharmacological targeting of glycolytic metabolism may represent an effective therapeutic approach.


Hypertension ◽  
2017 ◽  
Vol 69 (5) ◽  
pp. 770-777 ◽  
Author(s):  
Zhen Fang Huang Cao ◽  
Elina Stoffel ◽  
Paul Cohen

2017 ◽  
pp. 23-59 ◽  
Author(s):  
Maria S. Fernández-Alfonso ◽  
Beatriz Somoza ◽  
Dmitry Tsvetkov ◽  
Artur Kuczmanski ◽  
Mick Dashwood ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document