scholarly journals Performance Improvement of Axial Compressors and Fans with Plasma Actuation

2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
Sebastien Lemire ◽  
Huu Duc Vo ◽  
Michael W. Benner

This paper proposes the use of plasma actuator to suppress boundary layer separation on a compressor blade suction side to increase axial compressor performance. Plasma actuators are a new type of electrical flow control device that imparts momentum to the air when submitted to a high AC voltage at high frequency. The concept presented in this paper consists in the positioning of a plasma actuator near the separation point on a compressor rotor suction side to increase flow turning. In this computational study, three parameters have been studied to evaluate the effectiveness of plasma actuator: actuator strength, position and actuation method (steady versus unsteady). Results show that plasma actuator operated in steady mode can increase the pressure ratio, efficiency, and power imparted by the rotor to the air and that the pressure ratio, efficiency and rotor power increase almost linearly with actuator strength. On the other hand, the actuator's position has limited effect on the performance increase. Finally, the results from unsteady simulations show a limited performance increase but are not fully conclusive, due possibly to the chosen pulsing frequencies of the actuator and/or to limitations of the CFD code.

2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Y. Bousquet ◽  
N. Binder ◽  
G. Dufour ◽  
X. Carbonneau ◽  
M. Roumeas ◽  
...  

The present paper numerically investigates the stall inception mechanisms in a centrifugal compressor stage composed of a splittered unshrouded impeller and a vaned diffuser. Unsteady numerical simulations have been conducted on a calculation domain comprising all the blade passages over 360 deg for the impeller and the diffuser. Three stable operating points are simulated along a speed line, and the full path to instability is investigated. The paper focusses first on the effects of the mass flow reduction on the flow topology at the inlet of both components. Then, a detailed analysis of stall inception mechanisms is proposed. It is shown that at the inlet of both components, the mass flow reduction induces boundary layer separation on the blade suction side, which results in a vortex tube having its upper end at the casing and its lower end at the blade wall. Some similarities with flows in axial compressor operating at stall condition are outlined. The stall inception process starts with the growth of the amplitude of a modal wave rotating in the vaneless space. As the flow in the compressor is subsonic, the wave propagates upstream and interacts with the impeller flow structure. This interaction leads to the drop in the impeller pressure ratio.


2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
Vijaykumar Jain ◽  
Quamber H. Nagpurwala ◽  
Abdul Nassar

Aspiration in an axial compressor is normally regarded as sucking out the low momentum boundary layer from blade suction surface, thus lowering the chances of flow separation and consequently that of stall under off-design operation. However, the suction mass flow does not take part in useful work and leads to loss of engine power output. This paper deals with a new concept of natural aspiration to energize blade suction surface boundary layer by injecting some fluid from pressure to suction side through a part span slot on the blade. The energized boundary layer has lesser tendency to separate, thus enhancing stall margin. Numerical simulations were carried out to study the effect of aspiration slot location and geometry on the performance and stall margin of a transonic axial compressor rotor. The computational results without aspiration slot were in fair agreement with the published experimental data. The modified rotor, with part span aspiration, showed ~3.2% improvement in stall margin at design rotational speed. The pressure ratio and efficiency of the aspirated rotor dropped by ~1.42% and ~2.0%, respectively, whereas the structural analysis did not indicate any adverse effect on the blade stress distribution in the presence of aspiration slot.


Author(s):  
Marcus Lejon ◽  
Niklas Andersson ◽  
Lars Ellbrant ◽  
Hans Mårtensson

In this paper, the impact of manufacturing variations on performance of an axial compressor rotor are evaluated at design rotational speed. The geometric variations from the design intent were obtained from an optical coordinate measuring machine and used to evaluate the impact of manufacturing variations on performance and the flow field in the rotor. The complete blisk is simulated using 3D CFD calculations, allowing for a detailed analysis of the impact of geometric variations on the flow. It is shown that the mean shift of the geometry from the design intent is responsible for the majority of the change in performance in terms of mass flow and total pressure ratio for this specific blisk. In terms of polytropic efficiency, the measured geometric scatter is shown to have a higher influence than the geometric mean deviation. The geometric scatter around the mean is shown to impact the pressure distribution along the leading edge and the shock position. Furthermore, a blisk is analyzed with one blade deviating substantially from the design intent, denoted as blade 0. It is shown that the impact of blade 0 on the flow is largely limited to the blade passages that it is directly a part of. The results presented in this paper also show that the impact of this blade on the flow field can be represented by a simulation including 3 blade passages. In terms of loss, using 5 blade passages is shown to give a close estimate for the relative change in loss for blade 0 and neighboring blades.


Author(s):  
John Kidikian ◽  
Marcelo Reggio

With yearly advances in CFD techniques and methodologies, and the increased capacity and capabilities of computer CPU, GPU, and information storage, CFD has become a powerful design tool. However, despite its vast strengths, a CFD analysis is still based on the sound development of the 1D mean-line analysis methodology. This paper (part 1 of 2) describes an off-design axial compressor mean-line code, tested in a specialized engineering software for the development and analysis of a whole gas turbine engine, and the various tuning factors used to obtain an off-design performance match. It will be shown that, to obtain a proper match of the off-design performance of single-stage transonic axial compressors, both the rotor and stage pressure ratio, and the rotor temperature ratio are required to be converged upon. To do so, the off-design mean-line analysis requires the incorporation of a set of inlet & exit blockage factors and deviation angles that vary with the compressor performance conditions. This approach differs from the literature-based procedural assumptions (or rule-of-thumb) of fixed inlet and exit blockage factors of approximately “0.98”, and the use of a unique deviation angle based on Carter’s rule. The results obtained in this paper are then used to develop a generalized off-design mean-line loss modelling methodology (part 2 of 2) capable of predicting the off-design performance of four well documented NASA transonic axial compressors.


Author(s):  
Hongwei Ma ◽  
Jun Zhang

The purpose of this paper is to investigate numerically the effects of the tip geometry on the performance of an axial compressor rotor. There are three case studies which are compared with the base line tip geometry. 1) baseline (flat tip); 2) Cavity (tip with a cavity); 3) SSQA (suction side squealer tip) and 4) SSQB (modified suction side squealer tip). The case of SSQB is a combination of suction side squealer tip and the cavity tip. From leading edge to 10% chord, the tip has a cavity. From 10% chord to trailing edge, the tip has a suction side squealer. The numerical results of 2) show that the cavity tip leads to lower leakage mass flow and greater loss in tip gap and the rotor passage. The loading near the blade tip is lower than the baseline, thus the tangential force of the blade is lower. It leads to lower pressure rise than the baseline. The performance of the compressor for the tip with cavity is worse than the baseline. The results of 3) show that the higher curvature of the suction side squealer increases the loading of the blade and the tangential blade force. With the suction side squealer tip, the leakage flow experiences two vena contractor thus the mass of the leakage flow is reduced which is benefit for the performance of the compressor. The loss in the tip gap is lower than baseline. The performance is better than the baseline with greater pressure rise of the rotor, smaller leakage mass flow and lower averaged loss. For the case the SSQB, the leakage mass flow is lower than the SSQA and the loss in the tip gap and the rotor passage is greater than SSQA. The performance of the case of the SSQB is worse than the case of SSQA.


Author(s):  
Garth V. Hobson ◽  
Anthony J. Gannon ◽  
Scott Drayton

A new design procedure was developed that uses commercial-off-the-shelf software (MATLAB, SolidWorks, and ANSYS-CFX) for the geometric rendering and analysis of a transonic axial compressor rotor with splitter blades. Predictive numerical simulations were conducted and experimental data were collected in a Transonic Compressor Rig. This study advanced the understanding of splitter blade geometry, placement, and performance benefits. In particular, it was determined that moving the splitter blade forward in the passage between the main blades, which was a departure from the trends demonstrated in the few available previous transonic axial compressor splitter blade studies, increased the mass flow range with no loss in overall performance. With a large 0.91 mm (0.036 in) tip clearance, to preserve the integrity of the rotor, the experimentally measured peak total-to-total pressure ratio was 1.69 and the peak total-to-total isentropic efficiency was 72 percent at 100 percent design speed. Additionally, a higher than predicted 7.5 percent mass flow rate range was experimentally measured, which would make for easier engine control if this concept were to be included in an actual gas turbine engine.


2010 ◽  
Vol 133 (1) ◽  
Author(s):  
Sébastien Lemire ◽  
Huu Duc Vo

This paper proposes a new technique to reduce the noise generated by rotor-stator interaction (tonal noise) in fans and compressors. The method involves the use of single dielectric barrier discharge (plasma) actuators near the blade trailing edge to reduce blade wakes. Plasma actuators are a new and simple type of active flow control device consisting of two parallel and offset electrodes separated by a layer of dielectric material. The application of a high ac voltage at high frequency to the electrodes generates a body force on the flow in the vicinity of the electrodes to inject momentum without mass addition. A preliminary assessment of the proposed concept is performed with a computational study on modern low-speed compressor rotor geometry. A plasma actuator model is implemented in an established turbomachinery CFD code. Simulations are carried out to evaluate the effect of the actuator strength, location, and actuation method (continuous versus pulsed) on the rotor wake. Results show that plasma actuators operated in continuous mode near the trailing edge can significantly influence the wake of the rotor with relatively little power consumption. The effectiveness of the actuation is proportional to actuator strength (induced body force). The exact position of the actuator in the trailing edge region has little effect on the effectiveness of the actuation. The results from simulations with pulsed actuation show very low time-averaged influence on the wake and are not fully conclusive, due possibly to the frequencies simulated and the limitations of the RANS CFD tool.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Vishwas Iyengar ◽  
Lakshmi N. Sankar

Axial compressors are widely used in many aerodynamic applications. The design of an axial compressor configuration presents many challenges. It is necessary to retool the design methodologies to take advantage of the improved accuracy and physical fidelity of these advanced methods. Here, a first-principles based multiobjective technique for designing single stage compressors is described. The study accounts for stage aerodynamic characteristics and rotor-stator interactions. The proposed methodology provides a way to systematically screen through the plethora of design variables. This method has been applied to a rotor-stator stage similar to NASA Stage 35. By selecting the most influential design parameters and by optimizing the blade leading edge and trailing edge mean camber line angles, phenomena such as tip blockages, blade-to-blade shock structures and other loss mechanisms can be weakened or alleviated. It is found that these changes to the configuration can have a beneficial effect on total pressure ratio and stage adiabatic efficiency, thereby improving the performance of the axial compression system.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Nicolas Gourdain ◽  
Francis Leboeuf

This paper deals with the numerical simulation of technologies to increase the compressor performances. The objective is to extend the stable operating range of an axial compressor stage using passive control devices located in the tip region. First, the behavior of the tip leakage flow is investigated in the compressor without control. The simulation shows an increase in the interaction between the tip leakage flow and the main flow when the mass flow is reduced, a phenomenon responsible for the development of a large flow blockage region at the rotor leading edge. A separation of the rotor suction side boundary layer is also observed at near stall conditions. Then, two approaches are tested in order to control these flows in the tip region. The first one is a casing treatment with nonaxisymmetric slots. The method showed a good ability to control the tip leakage flow but failed to reduce the boundary layer separation on the suction side. However, an increase in the operability was observed but with a penalty for the efficiency. The second approach is a blade treatment that consists of a longitudinal groove built in the tip of each rotor blade. The simulation pointed out that the device is able to control partially all the critical flows with no penalty for the efficiency. Finally, some recommendations for the design of passive treatments are presented.


Sign in / Sign up

Export Citation Format

Share Document