scholarly journals Trade-Off between Foraging Activity and Infestation by Nest Parasites in the Primitively Eusocial BeeHalictus scabiosae

2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Andrea Lienhard ◽  
Lea Mirwald ◽  
Thomas Hötzl ◽  
Ilse Kranner ◽  
Gerald Kastberger

Diurnal activities ofHalictus scabiosaebees and their nest parasites (major bee-flies, cuckoo wasps, ichneumon wasps,Sphecodesbees, and velvet ants) were investigated at a study site with 159 nests in Eastern Austria. Foraging activity correlated with ambient temperature only before midday and decreased in the afternoon. The activity of nest-infesting parasites increased during the day and correlated with ambient temperature. The match factorfmbetween the ratios of the foraging activities ofH. scabiosaeand the ratios of aspects of morning temperature was assessed on three consecutive days with different weather. The activity patterns of halictine bees and their nest parasites differed: the parasites exhibited only small time windows in which their activities were synchronised with those of their hosts. The bees exhibited an anticyclic behaviour and collected food in times of low parasite pressure and decreased foraging activity when parasite pressure increased.

2004 ◽  
Vol 20 (4) ◽  
pp. 397-407 ◽  
Author(s):  
Christoph F. J. Meyer ◽  
Christian J. Schwarz ◽  
Jakob Fahr

We studied activity patterns and habitat use by insectivorous bats in Comoé National Park, Ivory Coast. Bat foraging activity was quantified along five transects representing three different habitat types using acoustic monitoring and captures with mist nets and harp traps. Aerial insect abundance was assessed using a light trap; in addition shrub and tree arthropods were sampled. Bat activity was significantly and positively related to insect availability and ambient temperature, whereas increased visibility of the moon had a negative influence on flight activity. Together, these factors best explained both total bat activity and activity of bats hunting in open space and edge habitats. The interaction between temperature and light intensity was the best predictor of activity by species foraging in obstacle-rich forest habitats, however, the regression model had a low predictive value. Overall, a large proportion (c. 50%) of the variation in bat activity appeared to be a consequence of transect- and/or habitat-specific influences. We found a significant non-linear relationship between the activity of QCF (quasi-constant frequency) and FM–QCF (frequency modulated – quasi-constant frequency) bats and the phase of the moon, with lowest levels of activity occurring near full moon. We interpret this lunar-phobic behaviour as a reflection of a higher predation risk during moonlit periods. For FM (steep frequency modulated) and CF (constant frequency) bats, no significant correlation was found, although there was a trend suggesting that these bats at least were not negatively affected by bright moonlight. Foraging activity of bats was positively correlated with the abundance of atympanate moths; however, no such correlation was found for tympanate moths.


1991 ◽  
Vol 81 (2) ◽  
pp. 622-642
Author(s):  
K. Bataille ◽  
J. M. Chiu

Abstract We present a method to determine the polarization of body waves from three-component, high-frequency data and examples of its application. The method is based on the principal component approach. One advantage of this approach is that the polarization state can be determined for small time windows compared with the predominant period of the wave. This is particularly useful for identifying converted waves within the crust. The stability of the result is analyzed with synthetic cases by adding simultaneous arrivals from waves and random noise. The method works well with both synthetic and local data in the detection of the polarization of the wave by separating arrivals from different directions. From the local data, some seismic phases related to crustal conversions are observed that require strong lateral variations.


Author(s):  
Colin Little ◽  
David Morritt ◽  
David M. Paterson ◽  
Penny Stirling ◽  
Gray A. Williams

Activity patterns of limpets were studied at two adjacent sites in an Irish sea lough, Lough Hyne, in order to relate timing of activity to physical and biological influences. Activity was suppressed during heavy rainfall, and osmotic stress from dilution appears to have led to increased mortality in transplanted limpets. Activity increased as tides progressed from neaps to springs, and for limpets low on the shore it was enhanced by wave action. It is suggested that lack of activity in calm water may reduce predation pressure from crabs, which caused high mortality in transplanted limpets. Either low relative humidity or dryness of the rock diminished activity of low-water limpets. Differences in feeding activity between low-water limpets and high-water limpets may relate to food supply, since more food was available low on the shore, and the guts of low-water limpets contained more diatoms than those of high-water individuals. Differences between the two sites are at present unexplained but may relate to differences in micro habitats.


2002 ◽  
Vol 87 (3) ◽  
pp. 1213-1221 ◽  
Author(s):  
J. Guillaume Pelletier ◽  
Denis Paré

Much data indicate that the perirhinal (PRH) cortex plays a critical role in declarative memory and that the amygdala facilitates this process under emotionally arousing conditions. However, assuming that the amygdala does so by promoting Hebbian interactions in the PRH cortex is hard to reconcile with the fact that variable distances separate amygdala neurons from their PRH projection sites. Indeed, to achieve a synchronized activation of distributed PRH sites, amygdala axons should display a uniform range of conduction times, irrespective of distance to target. To determine if amygdala axons meet this condition, we measured the antidromic response latencies of lateral amygdala (LA) neurons to electrical stimuli delivered at various rostrocaudal levels of the PRH cortex in cats anesthetized with isoflurane. Although large variations in antidromic response latencies were observed, they were unrelated to the distance between the PRH stimulation sites and LA neurons. To determine whether this result was an artifact due to current spread, two control experiments were performed. First, we examined the antidromic response latency of intrinsic PRH neurons. Although we used the same methods as in the first experiment, the antidromic response latency of PRH neurons to electrical stimuli applied in the PRH cortex increased linearly with the distance between the stimulating and recording sites. Second, we measured the antidromic response latency of PRH neurons projecting to the LA. In this pathway, we also found a statistically significant correlation between conduction times and distance to target. Thus these results support the intriguing possibility that the conduction velocity and/or trajectory of LA axons are adjusted to compensate for variations in distance between the LA and distinct rostrocaudal PRH sites. We hypothesize that because of their uniform range of conduction times to the PRH cortex, LA neurons can generate short time windows of depolarization facilitating Hebbian associations between coincident, but spatially distributed, activity patterns in the PRH cortex. In this context, the temporal scatter of conduction times in the LA to PRH pathway is conceived as a mechanism used to lengthen the period of depolarization to compensate for conduction delays within intrinsic PRH pathways. In part, this mechanism might explain how the amygdala promotes memory storage in emotionally arousing conditions.


2017 ◽  
Author(s):  
Paul Evans ◽  
Emma Langley

The adoption of the International Convention for the Control and Management of Ships’ Ballast Water and Sediments (BWMC) in 2004 (herewith the Convention) has sought to prevent the spread of harmful aquatic organisms and pathogens in the ballast water and sediments of ships, threatening marine ecosystems worldwide. The Convention sets out the various requirements and the various steps vessels owners / operators and port States need to undertake in order to effectively manage ballast water and sediments. However, there are still open issues and uncertainty, including the scientific and practical challenges of sampling of ballast tanks and monitoring compliance with the Convention’s standards. In order to monitor compliance with the Convention’s standards, documented management practices can be inspected for appropriateness and inspection of vessel log books can give an indication that practices have been implemented. However, sampling is the most effective way to ensure compliance with standards set out in the Convention. To check compliance with the D-1 (exchange) standard, vessel log books should be inspected and sampling can be used to check for anomalies in the composition of the ballast water (e.g. salinity). D-1 compliance is intended as an interim step until treatment systems are more widely available – although, some ports may require exchange as well as treatment in the long term. Compliance with the D-2 (performance) standard following treatment of the ballast water requires the sampling of biological, chemical and physical parameters. Whether checking compliance to the D-1 or D-2 standards, there are significant sampling challenges. These include the logistics of gaining vessel access; having multiple sample methods available to suit ballast tank access restrictions; getting a representative sample; sample analyses; sample interpretation and; what to do if a sample fails? In addition to this, local requirements can present further challenges (e.g. small time windows for bacterial analysis). This paper will highlight the difficulties of sampling ballast tanks in practice, drawing from national and international experiences, and will also comment more broadly on the sampling process and governance – such as regional differences and the role of port State control. Drawing on protocols adopted by other states will help to facilitate a more efficient, consistent and organised implementation of the Convention to the shipping community worldwide.


2021 ◽  
Vol 43 ◽  
pp. 153-159
Author(s):  
Emma Quirosa

La biología térmica es uno de los aspectos más necesarios para entender la distribución y los patrones de actividad de las especies, sobretodo de los organismos ectotermos. El presente estudio aporta información sobre temperatura corporal de seis ofidios ibéricos y temperatura ambiental para el lugar donde habitan. Para tres de las especies, Coronella girondica (Daudin 1803), Macroprotodon brevis (Günter 1862) y Hemorrhois hip­pocrepis (Linnaeus 1758), estos son los primeros datos publicados en España. En el caso de Natrix maura (Linnaeus 1758) los datos de este estudio incluyen temperatura tanto en medio acuático como en medio terrestre. En total se han obtenido 31 registros de temperatura corporal y 30 registros de temperatura ambiente. También se aportan datos sobre temperatura corporal y ambiental de Malpolon monspessulanus (Hermann 1804) y Zamenis scalaris (Schinz 1822). Thermal biology is one of the most necessary aspects in understanding the distribution and activity patterns of species, above all of ectothermal organisms. The present study provides data on body temperature of six Iberian ophidians and the environmental temperature of the place they inhabit. For three species, southern smooth snake Coronella girondica (Daudin 1803), western false smooth snake Macroprotodon brevis (Günter 1862), and horse-shoe snake Hemorrhois hippocrepis (Linnaeus 1758), these are the first data published in Spain. In the case of Natrix maura (Linnaeus 1758), the present data include its temperature on land as well as in aquatic environments. In total, 31 body temperature records and 30 ambient temperature records were obtained. Additionally, data is given on body and environmental temperature for the ophidian species Malpolon monspessulanus (Hermann 1804) and Zamenis scalaris (Schinz 1822).


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mirjam Ravljen ◽  
Fajko Bajrović ◽  
Damjan Vavpotič

Abstract Background Stroke is a major health problem around the world. Several studies have examine the influence of ambient temperature on incidence of stoke, but they reported different results for different types of stroke and different geographical regions. Hence, effect of ambient temperature is still much of interest, when focusing on ischemic stroke (IS) in regions that have not been examined yet. The aim of our study is to analyse association between IS incidences and short, delayed and cumulative effect of average daily ambient temperature, humidity and pressure in central Europe. To the best of our knowledge, this is the first IS study conducted between 45° and 50° latitude where large part of Central European population resides. Methods We linked daily hospitals’ admission data for whole population and separately for two specific age groups with ambient temperature data. We considered patients coming from Ljubljana basin and its immediate surrounding. Data were gathered daily from January 2012 to December 2017. To measure the effect of average ambient temperature, humidity and pressure we used generalized linear model with a log-link-function and a Poisson distribution. Results The results of our study show a statistically significant immediate, delayed and cumulative effects of ambient temperatures on IS incidence for the whole population and the population older than 65 years. Specifically, 1 °C reduction in ambient temperature on a given day (Lag 0) increases the IS risk for approximately 5‰ (all population) or 6‰ (population older than 65 years). Similar effects were found for lags from 1 to 6. Analysis of time windows from 0 to 1 days up to 0–28 days also show statistically significant cumulative effect for the same two age groups. IS incidence was not found to be significantly related to pressure or humidity in any group. Conclusion The findings of this study may help healthcare authorities in central Europe improve existing stroke prevention measures and raise public awareness.


2021 ◽  
Author(s):  
◽  
Joshua Metzger

Locomotor activity patterns of laboratory mice are widely used to analyze circadian mechanisms, but most investigations have been performed under standardized laboratory conditions. Outdoors, animals are exposed to daily changes in photoperiod and other abiotic cues that might influence their circadian system. To investigate how the locomotor activity patterns under outdoor conditions compare to controlled laboratory conditions, we placed 2 laboratory mouse strains (melatonin-deficient C57Bl and melatonin-proficient C3H) in the garden of the Dr. Senckenbergische Anatomie in Frankfurt am Main. The mice were kept singly in cages equipped with an infrared locomotion detector, a hiding box, nesting material, and with food and water ad libitum. The locomotor activity of each mouse was recorded for 1 year, together with data on ambient temperature, light, and humidity. Chronotype, chronotype stability, total daily activity, duration of the activity period, and daily diurnality indices were determined from the actograms. C3H mice showed clear seasonal differences in the chronotype, its stability, the total daily activity, and the duration of the activity period. These pronounced seasonal differences were not observed in the C57Bl. In both strains, the onset of the main activity period was mainly determined by the evening dusk, whereas the offset was influenced by the ambient temperature. The actograms did not reveal infra-, ultradian, or lunar rhythms or a weekday/weekend pattern. Under outdoor conditions, the 2 strains retained their nocturnal locomotor identity as observed in the laboratory. Our results indicate that the chronotype displays a seasonal plasticity that may depend on the melatoninergic system. Photoperiod and ambient temperature are the most potent abiotic entraining cues. The timing of the evening dusk mainly affects the onset of the activity period; the ambient temperature during this period influences the latter’s duration. Humidity, overall light intensities, and human activities do not affect the locomotor behavior.


Sociobiology ◽  
2021 ◽  
Vol 68 (1) ◽  
Author(s):  
Flávio Curbani ◽  
Cássio Zocca ◽  
Rodrigo B. Ferreira ◽  
Cecilia Waichert ◽  
Tathiana Guerra Sobrinho ◽  
...  

Dinoponera lucida is a poneromorph ant endemic to the Atlantic Forest of Brazil. The species is classified as endangered in Brazil’s Red List due to its peculiar reproductive biology and high habitat fragmentation. Herein, we characterize D. lucida foraging activity and response to litter surface temperature in a lowland forest remnant in south-eastern Brazil. The mean flow of workers at nest openings was 3.8 ± 0.6 per hour, mean foraging trip was 14.2 ± 2.2 min, and mean foraging distance was 3.8 ± 0.4 m. The time spent per foraging trip and litter surface temperature were positively correlated. Flow of workers at nest openings was higher with mean temperature of litter surface between 21.0 and 27.0 °C. Our results show that D. lucida has a diurnal foraging activity related to habitat temperature. Our data contribute to the knowledge about the ecology of D. lucida and support the hypothesis of optimal food foraging regulated by habitat temperature. In addition, the better understanding of D. lucida activity patterns can assist on conservation planning of this endangered and endemic ant.


Sign in / Sign up

Export Citation Format

Share Document