scholarly journals Influence of Laurolactam Content on the Clay Intercalation of Polyamide 6,12/Clay Nanocomposites Synthesized by Open Ring Anionic Polymerization

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
E. N. Cabrera Álvarez ◽  
L. F. Ramos de Valle ◽  
F. J. Rodríguez González ◽  
F. Soriano-Corral ◽  
R. E. Díaz De León

In situanionic homo- and copolymerization of caprolactam (CL) and laurolactam (LL) with sodium montmorillonite clay (NaMMT) was carried out using two different initiators, sodium caprolactamate (CLNa) and caprolactam magnesium bromide (CLMgBr). Degree of conversion and final molecular weight were used to assess the advancement and efficiency of the polymerization reaction and X-ray diffraction and electron microscopy were used to evaluate the sodium montmorillonite clay intercalation/exfoliation. The use of CLNa as initiator produced a higher conversion degree and molecular weight than the use of CLMgBr. Through DSC, it was observed that CLNa and CLMgBr tended to produce random and block copolymer structures, respectively, and either random or block, this eventually has an effect on the clay dispersion within the polymer matrix. In all cases, increasing the LL content produced a decrease in the conversion degree and in the molecular weight of the resulting polymer.

Cerâmica ◽  
2016 ◽  
Vol 62 (362) ◽  
pp. 133-139
Author(s):  
J. C. Macêdo-Fonsêca ◽  
A. A. A. Tino ◽  
M. P. A. Silva-Alves ◽  
R. M. Souto-Maior

Abstract A sodium montmorillonite clay (Na+MMT) was modified with different contents of a reactive salt derived from thiophene (trimethyl-(2-thiophen-3-yl-ethyl)-ammonium bromide) (TMETA). The thiophene salt in the organoclay (xtioMMT) was oxidatively polymerized in situ, giving rise to montmorillonite clay intercalated with a polythiophene salt (xpoltioMMT). Analysis by Fourier transform infrared spectroscopy shows a difference in organization of the salt inside the clay lamellae, before and after its polymerization. X-ray diffraction indicates that the salts, whether polymeric or not, are arranged as a monolayer for all compositions. Differently to the expected, the thermal stability of the organoclays decreases upon polymerization suggesting degradation of TMETA in the polymerization reaction.


2007 ◽  
Vol 124-126 ◽  
pp. 1083-1086
Author(s):  
Jun Hee Sung ◽  
Hyoung Jin Choi

Nanocomposites of conducting polymers of polyaniline (PANI), poly(oethoxyaniline) (PEOA) and polypyrrole (PPy) with clay prepared via either in-situ emulsion polymerization or solvent intercalation were investigated especially for electrorheological fluid (ER) application. Internal structures of these nanocomposites were examined via wide angle X-ray diffraction (WAXD), and transmission electron microscope (TEM). The intercalated nanostructures analyzed via WAXD and TEM were correlated with the electrical property change originated from the nanoscale interaction between clay and conducting polymer. Moreover, their ER behaviors were measured via rotational rheometer with external electric field controller.


2017 ◽  
Vol 52 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Ahmad Mohaddespour ◽  
Seyed J Ahmadi ◽  
Hossein Abolghassemi ◽  
Seyed M Mahjoub ◽  
Saeid Atashrouz

The effect of electron beam irradiation on pristine poly(vinyl ester) and cured poly(vinyl ester)/clay nanocomposite with different clay contents is studied at irradiation doses ranging from 100 to 1000 kGy at room temperature. Poly(vinyl ester)/clay nanocomposites were prepared with different amounts of organically modified montmorillonite (1, 3, and 5 wt.%) by in situ polymerization method. Morphology properties of synthesized nanocomposites were studied by X-ray diffraction and transition electron microscopy. The irradiation dose up to 500 kGy yields an increase in Young’s modulus and tensile strength of nanocomposites while further irradiation deteriorates the mechanical strength of samples. Irradiation has no considerable influence on the surface hardness of synthesized nanocomposites. Thermogravimetric analysis results reveal the thermal stability of poly(vinyl ester), and its nanocomposites is improved with irradiation up to 500 kGy. However, similar to mechanical perdition at 1000 kGy irradiation, thermal resistance of nanocomposites decreases. The enhancement in mechanical and thermal properties of synthesized nanocomposites is attributed to the cross-linking effect as bonds can be formed directly between the neighbouring chains.


e-Polymers ◽  
2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Mohammad Galehassadi ◽  
Fatemeh Hosseinzadeh ◽  
Mehrdad Mahkam

Abstract Nanocomposites of polystyrene (PS) was prepared with new styrenic ionic liquid, N-(4-vinyl benzyl)-(N,N-dimethylamino) pyridinium chloride[VBMAP], surfactants used as organic modifications for the clays. Sodium montmorillonite (Na-MMT) was successfully modified by [VBMAP] to become OMMT through cation exchange technique which is shown by the increase of basalspacing of clay by XRD. The composite material based on polystyrene and organo-modified montmorillonite (OMMT) was prepared by insitu polymerization and characterized. The morphology of the polymer/clay hybrids was evaluated by X-ray diffraction (XRD) ,transmission electron microscopy (TEM) and scanning electron microscopy (SEM), showing good overall dispersion of the clay. The thermal stability of the polymer/clay nanocomposites were enhanced, as evaluated by thermogravimetric analysis.


2013 ◽  
Vol 844 ◽  
pp. 247-250
Author(s):  
Piriyapol Yokkhun ◽  
Bencha Thongnuanchan ◽  
Charoen Nakason

Nanocomposites based on epoxidized natural rubbers (ENRs) with various levels of epoxide groups (i.e., 10, 20, 30, 40 and 50 mol%) and organoclay were prepared by melt mixing process. The organoclay employed in this study was montmorillonite clay modified by octadecylamine (OC-MMT). Cure characteristics, dynamic properties and mechanical properties of ENRs nanocomposites filled with 5 phr of OC-MMT were studied. In all cases, X-ray diffraction results indicated intercalation of ENRs into the silicate interlayer as an increase in the interlayer distance of layered silicates was observed. The maximum torque and torque difference of ENRs nanocomposites increased with increasing levels of epoxide groups in ENRs. Additionally, it was also found that the tan δ value at Tg of the ENR-50 nanocomposite was much lower than those of other types of ENRs nanocomposite. This indicates stronger interaction between ENR-50 and OC-MMT. However, ENR-50 nanocomposite showed the poorest elasticity in term of the tan δ value at the ambient temperature compared to other types of ENRs nanocomposites. A good balance between strength and elasticity was also observed in the ENR-30 nanocomposite. These results are also consistent with the observation that tensile strength and elongation at break of ENR-30 nanocomposite were higher than those of other types of ENRs nanocomposites.


2017 ◽  
Vol 14 (2) ◽  
pp. 204-211 ◽  
Author(s):  
Fatima Zeggai ◽  
Mohammed Belbachir ◽  
Aicha Hachmaoui

In this work we report a simple way for the conducting polymer nanocomposites synthesis using on algerian hydrophilic natural Montmorillonite (MMT) nanoclay named Maghnite (Mag) as dopant. The electrochemical properties study of the following conducting polymers: poly(4-aminobenzylamine) (P4ABA) and polyaniline (PANI) nanocomposites with copper maghnite (Mag-Cu) were successfully prepared by In-Situ polymerization, in presence of inorganic nanolayers of clay, and oxidizing agent ammonium persulfate. The synthesis of copolymers was developed at different feed mole fractions of monomer. The products were characterized by the Fourier transform Infrared (FT-IR), the ultraviolet-visible (UV–vis) spectroscopies and X-ray diffraction (XRD). The results showed that the in-situ polymerization produced real nanocomposites containing aniline and 4-aminobenzylamine units.


2011 ◽  
Vol 284-286 ◽  
pp. 1901-1904 ◽  
Author(s):  
Shao Yun Shan ◽  
Qing Ming Jia ◽  
Ya Ming Wang ◽  
Jin Hui Peng

A novel nanofiller containing layered organo-modifed montmorillonite (oM) and mesoporous silica micro-sphere (MS) was prepared by in situ deposition method, and the microstructures and morphologies of this nanofiller were characterized by Fourier transform infrared spectrometry (FTIR) X-ray diffraction (XRD) and transmission electronic microscopy (TEM). EP/oM-MS nanocomposite was obtained by adding oM-MS to EP matrix. Morphologies and mechanical of the new ternary nanocomposite were investigated. For purpose of comparison, the corresponding binary nanocomposites, i.e., EP modified with either oM or MS, were tested as well. The test results of mechanical properties show that oM obviously improves the strength of EP and MS enhances the toughness of EP, but oM-MS exhibits synergistic effect on toughening and reinforcing of EP.


2003 ◽  
Vol 788 ◽  
Author(s):  
Fawn M. Uhl ◽  
Brian R. Hinderliter ◽  
Siva Prashanth Davuluri ◽  
Stuart G. Croll ◽  
Shing-Chung Wong ◽  
...  

ABSTRACTUV curable polymers are prevalent in microelectronic applications. Several advantages are associated with UV curing such as rapid cure, solvent free systems, application versatility, low energy requirements, and low temperature operation. To be used in electronics the films must posses the following attributes: high glass transition, barrier properties, low shrinkage, flexibility, and enhanced mechanical properties. The area of polymer-clay nanocomposites have been widely investigated by researchers and improved mechanical, thermal, and barrier properties were reported. Most researchers have attempted nanocomposite formation by melt mixing or in situ polymerization. Little is understood on UV curable nanocomposites. This paper seeks to examine nanoclay-containing polymers using organomodified montmorillonites in UV curable systems and the effects of such clay inclusions on the properties of UV cured films. By x-ray diffraction it appeared that intercalated structures were formed. In the case of an epoxy acrylate formulation an increase in glass transition temperature was observed for formulations containing clay.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Limei Wang ◽  
Aihua He

Polypropylene (PP)/clay nanocomposites were synthesized by in situ intercalative polymerization with TiCl4/MgCl2/clay compound catalyst. Microstructure and thermal properties of PP/clay nanocomposites were studied in detail. Fourier transform infrared (FTIR) spectra indicated that PP/clay nanocomposites were successfully prepared. Both wide-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) examination proved that clay layers are homogeneously distributed in PP matrix. XRD patterns also showed that theαphase was the dominate crystal phase of PP in the nanocomposites. Thermogravimetric analysis (TGA) examinations confirmed that thermal stability of PP/clay nanocomposites was markedly superior to pure PP. Differential scanning calorimetry (DSC) scans showed that the melt temperature and the crystallinity of nanocomposites were slightly lower than those of pure PP due to crystals imperfections.


Sign in / Sign up

Export Citation Format

Share Document