Synthesis and Properties Epoxy Resin/Mesoporous Silica-Organic Clay Nanocomposites

2011 ◽  
Vol 284-286 ◽  
pp. 1901-1904 ◽  
Author(s):  
Shao Yun Shan ◽  
Qing Ming Jia ◽  
Ya Ming Wang ◽  
Jin Hui Peng

A novel nanofiller containing layered organo-modifed montmorillonite (oM) and mesoporous silica micro-sphere (MS) was prepared by in situ deposition method, and the microstructures and morphologies of this nanofiller were characterized by Fourier transform infrared spectrometry (FTIR) X-ray diffraction (XRD) and transmission electronic microscopy (TEM). EP/oM-MS nanocomposite was obtained by adding oM-MS to EP matrix. Morphologies and mechanical of the new ternary nanocomposite were investigated. For purpose of comparison, the corresponding binary nanocomposites, i.e., EP modified with either oM or MS, were tested as well. The test results of mechanical properties show that oM obviously improves the strength of EP and MS enhances the toughness of EP, but oM-MS exhibits synergistic effect on toughening and reinforcing of EP.

2010 ◽  
Vol 129-131 ◽  
pp. 1248-1251 ◽  
Author(s):  
Qing Ming Jia ◽  
Shao Yun Shan ◽  
Li Hong Jiang ◽  
Ya Ming Wang

Size, shape and processing of the inorganic fillers are important for improving properties of nanocomposites. In this paper, a novel nanofiller containing mesoporous silica(MS) and fibrous sepiolite(SE) was prepared by in situ deposition method. EP/MS-SE nanocomposite was obtained by adding MS-SE to epoxy resin(EP) matrix. Morphologies and mechanical properties of the new ternary nanocomposite were investigated. For purpose of comparison, the corresponding binary nanocomposites, i.e., EP modified with either MS or SE, were tested as well. The test results of mechanical properties show that MS improves the strength of EP and SE obviously enhances the toughness of EP, but oM-MS exhibits synergistic effect on toughening and reinforcing of EP at the same time. Dynamic mechanical analysis revealed that the glass transition temperature and storage modulus of the EP/MS-SE nanocomposite was higher than those of pure EP.


2007 ◽  
Vol 124-126 ◽  
pp. 1083-1086
Author(s):  
Jun Hee Sung ◽  
Hyoung Jin Choi

Nanocomposites of conducting polymers of polyaniline (PANI), poly(oethoxyaniline) (PEOA) and polypyrrole (PPy) with clay prepared via either in-situ emulsion polymerization or solvent intercalation were investigated especially for electrorheological fluid (ER) application. Internal structures of these nanocomposites were examined via wide angle X-ray diffraction (WAXD), and transmission electron microscope (TEM). The intercalated nanostructures analyzed via WAXD and TEM were correlated with the electrical property change originated from the nanoscale interaction between clay and conducting polymer. Moreover, their ER behaviors were measured via rotational rheometer with external electric field controller.


2017 ◽  
Vol 52 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Ahmad Mohaddespour ◽  
Seyed J Ahmadi ◽  
Hossein Abolghassemi ◽  
Seyed M Mahjoub ◽  
Saeid Atashrouz

The effect of electron beam irradiation on pristine poly(vinyl ester) and cured poly(vinyl ester)/clay nanocomposite with different clay contents is studied at irradiation doses ranging from 100 to 1000 kGy at room temperature. Poly(vinyl ester)/clay nanocomposites were prepared with different amounts of organically modified montmorillonite (1, 3, and 5 wt.%) by in situ polymerization method. Morphology properties of synthesized nanocomposites were studied by X-ray diffraction and transition electron microscopy. The irradiation dose up to 500 kGy yields an increase in Young’s modulus and tensile strength of nanocomposites while further irradiation deteriorates the mechanical strength of samples. Irradiation has no considerable influence on the surface hardness of synthesized nanocomposites. Thermogravimetric analysis results reveal the thermal stability of poly(vinyl ester), and its nanocomposites is improved with irradiation up to 500 kGy. However, similar to mechanical perdition at 1000 kGy irradiation, thermal resistance of nanocomposites decreases. The enhancement in mechanical and thermal properties of synthesized nanocomposites is attributed to the cross-linking effect as bonds can be formed directly between the neighbouring chains.


2010 ◽  
Vol 123-125 ◽  
pp. 145-148 ◽  
Author(s):  
Sahar Ghafarloo ◽  
Mehrdad Kokabi

Achievement of exfoliated structure of polymer/ Clay nanocomposites is of particular interest for the improvement of mechanical properties. In this work, the morphology and mechanical properties of epoxy/ clay nanocomposites has been investigated. Diglycidyl ether of bis-phenol A (DGEBA) epoxy resin (EPON828) and Jeffamine D400 curing agent was used. To obtain perfect dispersion, nanoclay (Cloisite 30B) was sonicated in acetone. The mixture was then mixed with polymer. Afterwards, the curing process was performed by addition of curing agent and degassing. Disappearing of peaks in X-Ray diffraction patterns of nanocomposites containing less than 5wt% nanoclay, is a good evidence of perfect dispersion of layered silicates in matrix, i.e. formation of exfoliated morphology. Based on tensile test results, it is deduced that as the amount of nanoclay increases, the elastic modulus and elongation at break of the nanocomposites containing 1wt% and 5wt% nanoclay increases by 12% and 31%, respectively. Therefore, obtaining perfect dispersion of layered silicates in epoxy matrix and exfoliated morphology, results in better mechanical properties of the nanocomposites.


e-Polymers ◽  
2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Mohammad Galehassadi ◽  
Fatemeh Hosseinzadeh ◽  
Mehrdad Mahkam

Abstract Nanocomposites of polystyrene (PS) was prepared with new styrenic ionic liquid, N-(4-vinyl benzyl)-(N,N-dimethylamino) pyridinium chloride[VBMAP], surfactants used as organic modifications for the clays. Sodium montmorillonite (Na-MMT) was successfully modified by [VBMAP] to become OMMT through cation exchange technique which is shown by the increase of basalspacing of clay by XRD. The composite material based on polystyrene and organo-modified montmorillonite (OMMT) was prepared by insitu polymerization and characterized. The morphology of the polymer/clay hybrids was evaluated by X-ray diffraction (XRD) ,transmission electron microscopy (TEM) and scanning electron microscopy (SEM), showing good overall dispersion of the clay. The thermal stability of the polymer/clay nanocomposites were enhanced, as evaluated by thermogravimetric analysis.


2012 ◽  
Vol 18 (33) ◽  
pp. 10300-10311 ◽  
Author(s):  
Keiichi Miyasaka ◽  
Hiroko Hano ◽  
Yoshiki Kubota ◽  
Yangzheng Lin ◽  
Ryong Ryoo ◽  
...  

2017 ◽  
Vol 14 (2) ◽  
pp. 204-211 ◽  
Author(s):  
Fatima Zeggai ◽  
Mohammed Belbachir ◽  
Aicha Hachmaoui

In this work we report a simple way for the conducting polymer nanocomposites synthesis using on algerian hydrophilic natural Montmorillonite (MMT) nanoclay named Maghnite (Mag) as dopant. The electrochemical properties study of the following conducting polymers: poly(4-aminobenzylamine) (P4ABA) and polyaniline (PANI) nanocomposites with copper maghnite (Mag-Cu) were successfully prepared by In-Situ polymerization, in presence of inorganic nanolayers of clay, and oxidizing agent ammonium persulfate. The synthesis of copolymers was developed at different feed mole fractions of monomer. The products were characterized by the Fourier transform Infrared (FT-IR), the ultraviolet-visible (UV–vis) spectroscopies and X-ray diffraction (XRD). The results showed that the in-situ polymerization produced real nanocomposites containing aniline and 4-aminobenzylamine units.


2021 ◽  
Vol 55 (5-6) ◽  
pp. 681-688
Author(s):  
GENNE PATT O. SAMAR ◽  
ALVIN KARLO G. TAPIA ◽  
CHRYSLINE MARGUS N. PIÑOL ◽  
NACITA B. LANTICAN ◽  
MA. LOURDES F. DEL MUNDO ◽  
...  

We employed a microwave-assisted two-pot in-situ deposition technique to incorporate zinc oxide particulates in the structure of filter paper to produce antimicrobial paper. The process involved successive immersion of filter paper samples in ZnSO4 (precursor solution) and NaOH (precipitating agent) to form Zn(OH)2, which transformed into ZnO during microwave treatment. Successful deposition of ZnO particles on the filter paper was confirmed via X-ray diffraction and the corresponding morphologies were observed using field emission scanning electron microscopy. The ZnO-deposited papers were tested for antimicrobial activity and were found to be more effective against Staphylococcus aureus (gram-positive) than Escherichia coli (gram-negative). Bacterial populations were reduced by up to 92 ± 2% and 57 ± 4% for S. aureus and E. coli, respectively. Also, it was found that the samples prepared using higher concentrations of ZnSO4 and NaOH exhibited better antimicrobial properties.


2007 ◽  
Vol 40 (s1) ◽  
pp. s522-s526 ◽  
Author(s):  
Gerald A. Zickler ◽  
Susanne Jähnert ◽  
Sérgio S. Funari ◽  
Gerhard H. Findenegg ◽  
Oskar Paris

2018 ◽  
Vol 37 (7) ◽  
pp. 619-624 ◽  
Author(s):  
Musa Yıldırım ◽  
Dursun Özyürek

AbstractThis study investigates the wear behavior of Al hybrid composites produced by adding 4 % Ti and different amounts of B4C (ex situ) to the AA7075 alloy produced by powder metallurgy method in order to obtain TiAl3 (in situ) reinforcement phase. Different amounts of B4C (3 %, 6 % and 9 %) were added to the 4 % Ti added AA7075 alloy. Preformed parts were sintered in controlled atmosphere (argon) heat treatment furnace at 580 °C for 4 hours and then cooled. After the sintering process, the samples were characterized with scanning electron microscopy, X-ray diffraction and density and hardness measurements. Wear tests of the samples were conducted at 1ms-1 sliding speed, under 30N load for 6 different sliding distances (500–3000 m). As a result of the study, the density of the AA7075 alloys, added 4 % Ti and different amounts of B4C, was observed to decrease by the increasing amount of reinforcement elements. Also, the highest hardness value was measured for the 9 % B4C added AA7075 alloy. Wear test results showed that the weight loss of the aluminum hybrid composites increased with the increasing sliding distance. On the other hand, it was observed that weight losses of composites decreased with increasing amount of B4C.


Sign in / Sign up

Export Citation Format

Share Document