scholarly journals Supported Nanosizedα-FeOOH Improves Efficiency of Photoelectro-Fenton Process with Reaction-Controlled pH Adjustment for Sustainable Water Treatment

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Chuan Wang ◽  
Hong Liu ◽  
Zhimin Sun ◽  
Jian Huang ◽  
Yang Liao

The overall photoelectro-Fenton (PE-Fenton) process for water treatment with neutral initial pH includes three steps of pH reduction, PE-Fenton reaction, and pH elevation. Reaction-controlled pH adjustment (RCpA), which utilizes the intrinsic electrochemical reactions instead of chemical addition, has been employed to lower the pH, maintain the lowered pH for the Fenton reaction, and recover the pH for final effluent discharge. This study demonstrated that the overall efficiency of this sustainable PE-Fenton process was improved by rapidly recycling the iron substance. Nanosized iron oxide was prepared and employed to ensure such rapid recycling. SEM and XRD results showed that the as-prepared iron oxide wasα-FeOOH with 20 nm in size. The experimental results of dimethyl phthalate (DMP) degradation showed that diatomite-supportedα-FeOOH (N-α-FeOOH/diatomite) could efficiently reduce the DMP concentration and total organic carbon. Furthermore, compared with Fe3+, the N-α-FeOOH/diatomite saved 160 min for iron settlement at 20 mg L−1DMP concentration. Also, with the increment in the initial DMP concentration, extra energy consumed by the individual step of PE-Fenton reaction using the N-α-FeOOH/diatomite became negligible compared with that using free iron ions with the increment in the initial DMP concentration. This development is expected to be a major step of the PE-Fenton process with RCpA towards actual water treatment.

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Wen-shiuh Kuo ◽  
Chia-ling Wu

Treatment of color filter wastewater using solar photo-Fenton process enhanced by high-concentrating Fresnel lens was investigated in this paper. Optimal reaction conditions based on response surface methodology (RSM) were established as under an initial pH of 5, a [H2O2]0/COD0ratio of 1~1.35 and a [H2O2]0/[Fe2+]0ratio of 15 for a reaction time of 60 min, which could reach a readily biodegradable level, that is, the biodegradability (BOD5/COD) of wastewater was more than 0.3. With the assistance of Fresnel lens, the solar photo-Fenton process increased the COD degradation rate and mineralization rate by a factor of 4.5 and 6.5, respectively. In addition, the microtoxicity (TU50) of wastewater was almost diminished after a 60 min of treatment, whereas the microtoxicity of treated wastewater without the assistance of Fresnel lens remained a TU50value of 1.166. This could be mainly due to the concentrating effect of Fresnel lens for solar energy, resulting in an increase of 2~3 times of solar light intensity and a raising heat irradiation in terms of 15~30 °C of wastewater temperature. These results revealed that solar energy could be concentrated effectively by using Fresnel lens and showed a significant promoting effect on the photo-Fenton reaction for treating color filter wastewater.


2007 ◽  
Vol 41 (8) ◽  
pp. 2937-2942 ◽  
Author(s):  
Hong Liu ◽  
Chuan Wang ◽  
Xiangzhong ◽  
Xiaoli Xuan ◽  
Chengchun Jiang ◽  
...  

2020 ◽  
Vol 18 (1) ◽  
pp. 1148-1166
Author(s):  
Ganjar Fadillah ◽  
Septian Perwira Yudha ◽  
Suresh Sagadevan ◽  
Is Fatimah ◽  
Oki Muraza

AbstractPhysical and chemical methods have been developed for water and wastewater treatments. Adsorption is an attractive method due to its simplicity and low cost, and it has been widely employed in industrial treatment. In advanced schemes, chemical oxidation and photocatalytic oxidation have been recognized as effective methods for wastewater-containing organic compounds. The use of magnetic iron oxide in these methods has received much attention. Magnetic iron oxide nanocomposite adsorbents have been recognized as favorable materials due to their stability, high adsorption capacities, and recoverability, compared to conventional sorbents. Magnetic iron oxide nanocomposites have also been reported to be effective in photocatalytic and chemical oxidation processes. The current review has presented recent developments in techniques using magnetic iron oxide nanocomposites for water treatment applications. The review highlights the synthesis method and compares modifications for adsorbent, photocatalytic oxidation, and chemical oxidation processes. Future prospects for the use of nanocomposites have been presented.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2031
Author(s):  
Ruben Miranda ◽  
Isabel Latour ◽  
Angeles Blanco

Effluent reuse is a common practice for sustainable industrial water use. Salt removal is usually carried out by a combination of membrane processes with a final reverse osmosis (RO). However, the presence of silica limits the RO efficiency due to its high scaling potential and the difficulty of cleaning the fouled membranes. Silica adsorption has many advantages compared to coagulation and precipitation at high pHs: pH adjustment is not necessary, the conductivity of treated waters is not increased, and there is no sludge generation. Therefore, this study investigates the feasibility of using pseudoboehmite and its calcination product (γ-Al2O3) for silica adsorption from a paper mill effluent. The effect of sorbent dosage, pH, and temperature, including both equilibrium and kinetics studies, were studied. γ-Al2O3 was clearly more efficient than pseudoboehmite, with optimal dosages around 2.5–5 g/L vs. 7.5–15 g/L. The optimum pH is around 8.5–10, which fits well with the initial pH of the effluent. The kinetics of silica adsorption is fast, especially at high dosages and temperatures: 80–90% of the removable silica is removed in 1 h. At these conditions, silica removal is around 75–85% (<50 mg/L SiO2 in the treated water).


2018 ◽  
Vol 41 ◽  
pp. 279-287 ◽  
Author(s):  
Saideh Bagheri ◽  
Hossein Aghaei ◽  
Mehrorang Ghaedi ◽  
Arash Asfaram ◽  
Majid Monajemi ◽  
...  

2015 ◽  
Vol 73 (1) ◽  
pp. 88-94 ◽  
Author(s):  
Eric da Cruz Severo ◽  
Chayene Gonçalves Anchieta ◽  
Vitória Segabinazzi Foletto ◽  
Raquel Cristine Kuhn ◽  
Gabriela Carvalho Collazzo ◽  
...  

FeWO4 particles were synthesized by a simple, rapid and facile microwave technique and their catalytic properties in heterogeneous photo-Fenton reaction were evaluated. This material was employed in the degradation of Amaranth azo dye. Individual and interactive effects of operational parameters such as pH, dye concentration and H2O2 dosage on the decolorization efficiency of Amaranth dye were evaluated by 23 central composite design. According to characterization techniques, a porous material and a well-crystallized phase of FeWO4 oxide were obtained. Regarding the photo-Fenton reaction assays, up to 97% color and 58% organic carbon removal were achieved in the best experimental conditions. In addition, the photo-Fenton process maintained treatment efficiency over five catalyst reuse cycles to indicate the durability of the FeWO4 catalyst. In summary, the results reveal that the synthesized FeWO4 material is a promising catalyst for wastewater treatment by heterogeneous photo-Fenton process.


2000 ◽  
Author(s):  
Ming-Chyuan Lu ◽  
Elijah Kannatey-Asibu

Abstract Ramp-up is a major step in the implementation of manufacturing systems, and is even more critical in reconfigurable manufacturing systems. For a successful reduction in ramp-up time, it is essential to analyze and monitor both the overall manufacturing system and the individual machine tools/processes that comprise the system. Towards this end, we have addressed the issue of monitoring tool wear using audible sound to enable faulty conditions associated with wear to be identified during the process before the part quality gets out of specification. Audible sound generated from the cutting process is analyzed as a source for monitoring tool wear during turning, assuming adhesive wear as the predominant wear mechanism. The analysis incorporates the dynamics of the cutting process. In modeling the interaction on the flank surface, the asperities on the surfaces are represented as a trapezoidal series function with normal distribution. The effect of changing asperity height, size, spacing, and the stiffness of the asperity interaction is investigated and compared with experimental data.


Sign in / Sign up

Export Citation Format

Share Document