scholarly journals Focused Ion Beam in the Study of Biomaterials and Biological Matter

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Kathryn Grandfield ◽  
Håkan Engqvist

The application of focused ion beam (FIB) techniques in the life sciences has progressed by leaps and bounds over the past decade. A once dedicated ion beam instrument, the focused ion beam today is generally coupled with a plethora of complementary tools such as dual-beam scanning electron microscopy (SEM), environmental SEM, energy dispersive X-ray spectroscopy (EDX), or cryogenic possibilities. All of these additions have contributed to the advancement of focused ion beam use in the study of biomaterials and biological matter. Biomaterials, cells, and their interfaces can be routinely imaged, analyzed, or prepared for techniques such as transmission electron microscopy (TEM) with this comprehensive tool. Herein, we review the uses, advances, and challenges associated with the application of FIB techniques to the life sciences, with particular emphasis on TEM preparation of biomaterials, biological matter, and their interfaces using FIB.

Author(s):  
Q. Liu ◽  
H.B. Kor ◽  
Y.W. Siah ◽  
C.L. Gan

Abstract Dual-beam focused ion beam (DB-FIB) system is widely used in the semiconductor industry to prepare cross-sections and transmission electron microscopy (TEM) lamellae, modify semiconductor devices and verify layout. One of the factors that limits its success rate is sample charging, which is caused by a lack of conductive path to discharge the accumulated charges. In this paper, an approach using an insitu micromanipulator was investigated to alleviate the charging effects. With this approach, a simple front side semiconductor device modification was carried out and the corresponding stage current was monitored to correlate to the milling process.


2007 ◽  
Vol 22 (12) ◽  
pp. 3507-3515 ◽  
Author(s):  
G.Y. Yang ◽  
P.J. Moses ◽  
E.C. Dickey ◽  
C.A. Randall

We present an experimental methodology for locating and studying local failure sites in multilayer electroceramic devices at the submicron-length scale. In particular, the inhomogeneous degradation of multilayer ceramic capacitors is studied using a judicious combination of scanning electron microscopy (SEM), local-probe electrical measurements, focused ion beam (FIB) extraction, and transmission electron microscopy (TEM). Voltage-contrast SEM permits the identification of regions of different electrical potential within degraded multilayer devices. The local impedance from specific regions is measured in situ between a tungsten probe and the internal device electrodes, while impedance spectra are extracted for more detailed analysis. Because implementation occurs in dual-beam FIB/SEM, these locally defective sites can be extracted and thinned to electron transparency for further investigation by TEM. In this study, degraded sites in BaTiO3 multilayer capacitors are found to be associated with local oxygen deficiencies in BaTiO3, as measured by electron energy loss spectroscopy.


Author(s):  
Jian-Shing Luo ◽  
Hui-Min Lo ◽  
Jeremy D. Russell

Abstract X-ray photoelectron spectroscopy (XPS) is a very popular tool for identification of the chemical state of fluorine contamination on aluminum (Al) bond pads. To date, as far as the authors are aware the detailed microstructures of fluorine corrosion on bond pads have not been reported. This paper reports the microstructure evolution of fluorine corrosion on bond pads in a plastic box under specific environment conditions by using transmission electron microscopy (TEM), optical microscopy, focused ion beam and scanning electron microscopy (SEM). The elemental distributions and chemical bonding were performed by using Gatan Image Filter/TEM, energy dispersive X-ray/Scanning TEM (STEM), Auger electron spectroscopy and XPS, respectively. On Al pads with 35 atomic %, fluorine residual, corrosion was observed after around 10 days of storage and became more severe with time. The corrosion layers consist of nano-crystalline and amorphous for both single and double-layer structures.


2018 ◽  
Author(s):  
J. Demarest ◽  
B. Austin ◽  
J. Arjavac ◽  
M. Breton ◽  
M. Bergendahl ◽  
...  

Abstract Transmission electron microscopy (TEM) sample can be routinely made at a sub 30nm thickness and specific features in semiconductor device design are on the order of 30nm and smaller. As a result, small changes in pattern match registration can significantly influence the success or failure of proper TEM sample placement as an approximately 15nm shift in lamella placement can easily cause the sample to be off the feature of interest. To address this issue, design based recipe writing is being developed on a dual beam focused ion beam platform. The intent is to have the tool read a GDS file and pattern match the design information to physical wafer images in a similar fashion to state-of-the-art critical dimension scanning electron microscopy operation. While the results are very encouraging, more work needs to be done to ensure a TEM sample of approximately 30nm thickness is placed at the desired location.


2013 ◽  
Vol 19 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Aldo Armigliato ◽  
Stefano Frabboni ◽  
Gian Carlo Gazzadi ◽  
Rodolfo Rosa

AbstractA method for the fabrication of a wedge-shaped thin NiO lamella by focused ion beam is reported. The starting sample is an oxidized bulk single crystalline, ⟨100⟩ oriented, Ni commercial standard. The lamella is employed for the determination, by analytical electron microscopy at 200 kV of the experimental k(O-Ni) Cliff-Lorimer (G. Cliff & G.W. Lorimer, J Microsc103, 203–207, 1975) coefficient, according to the extrapolation method by Van Cappellen (E. Van Cappellen, Microsc Microstruct Microanal1, 1–22, 1990). The result thus obtained is compared to the theoretical k(O-Ni) values either implemented into the commercial software for X-ray microanalysis quantification of the scanning transmission electron microscopy/energy dispersive spectrometry equipment or calculated by the Monte Carlo method. Significant differences among the three values are found. This confirms that for a reliable quantification of binary alloys containing light elements, the choice of the Cliff-Lorimer coefficients is crucial and experimental values are recommended.


2007 ◽  
Vol 1020 ◽  
Author(s):  
R. Barabash ◽  
G. Ice ◽  
R. Kroger ◽  
H. Lohmeyer ◽  
K. Sebald ◽  
...  

AbstractIn this study the results of polychromatic X-ray microbeam analysis (PXM) of the structural changes caused by FIB in nitride heterostructures are presented and discussed in connection with micro-photoluminescence (μ-PL), fluorescent analysis, scanning electron (SEM) and transmission electron microscopy (TEM) data. It is shown that FIB processing distorts the lattice in the InGaN/GaN layer not only in the immediate vicinity of the processed area but also in the surroundings. A narrow amorphidized top layer is formed in the direct ion beam impact area.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


Author(s):  
H.J. Ryu ◽  
A.B. Shah ◽  
Y. Wang ◽  
W.-H. Chuang ◽  
T. Tong

Abstract When failure analysis is performed on a circuit composed of FinFETs, the degree of defect isolation, in some cases, requires isolation to the fin level inside the problematic FinFET for complete understanding of root cause. This work shows successful application of electron beam alteration of current flow combined with nanoprobing for precise isolation of a defect down to fin level. To understand the mechanism of the leakage, transmission electron microscopy (TEM) slice was made along the leaky drain contact (perpendicular to fin direction) by focused ion beam thinning and lift-out. TEM image shows contact and fin. Stacking fault was found in the body of the silicon fin highlighted by the technique described in this paper.


Sign in / Sign up

Export Citation Format

Share Document